Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A KöMaL 2005. májusi matematika feladatai

Kérjük, ha még nem tetted meg, olvasd el a versenykiírást.

Kedves Versenyzőnk!

A járvány miatt a saját és családtagjaid egészsége érdekében is kérjük, hogy minden megoldásodat az Elektronikus Munkafüzetben küldd be. Postára ne menj. Bizonytalan, hogy javítóink mikor tudják átvenni a papíron küldött megoldásokat, emiatt a postán küldött dolgozatok javítása elhúzódik — beleértve a februári feladatokra érkezett megoldásokat is.

Ha eddig nem tetted, tanuld meg a TeX rendszer használatát, amellyel honlapunkon közvetlenül megszerkesztheted és beküldheted a megoldásodat, vagy pedig használj szöveg- és képletszerkesztőt és a végeredményt — lehetőleg PDF-ben elmentve — töltsd fel.

A rendkívüli helyzetre tekintettel szkennelt vagy fényképezett kézírást is elfogadunk. Ügyelj arra, hogy a kép jól olvasható legyen, és a felbontás ne legyen se túl nagy, se túl alacsony. Ha fényképezel, érdemes több képet készíteni szórt (természetes) fénynél, és a legjobban sikerült képet használni. A képet fordítsd álló helyzetbe, a szélét vágd körbe, hogy csak a megoldás maradjon a képen, végül méretezd át. Egy A4-es lapot kb. 1400x2000 méretű JPEG képként érdemes feltölteni, így a fájl mérete sem lesz 1 megabájtnál nagyobb. Ezután töltsd fel a megoldásod.

Fényképek feldolgozására sokféle képmanipuláló programot és telefonos applikációt használhatsz (GIMP, Google Photo, Snapseed stb.).


Feladat típusok elrejtése/megmutatása:


C-jelű feladatok

A beküldési határidő 2005. június 15-én LEJÁRT.


C. 810. Melyek azok a 45-tel osztható háromjegyű számok, amelyeknek a számjegyei a felírás sorrendjében számtani sorozatot alkotnak?

(5 pont)

megoldás, statisztika


C. 811. Adjuk meg azokat az egymást követő egész számokat, amelyeknek az összege 100.

(5 pont)

megoldás, statisztika


C. 812. Megy a gőzös Kanizsára a 21 km távolságra lévő Zalakomárról. Az utat 16 perc alatt teszi meg úgy, hogy indulástól egyenletesen gyorsul, majd 90~\frac{\rm km}{\rm h} állandó sebességgel halad, végül egyenletesen lassulva megáll. Mennyi ideig megy a gőzös 90~\frac{\rm km}{\rm h} sebességgel?

(5 pont)

megoldás, statisztika


C. 813. Egy téglalap egyik oldala 10 cm hosszú. Mekkora a téglalap másik oldala, ha egy 10 cm x1 cm-es téglalap átlósan is éppen elfér benne?

(5 pont)

megoldás, statisztika


C. 814. Oldjuk meg a következő egyenletrendszert, amelyben t valós paraméter:

x+y+z=t,

x+(t+1)y+z=0,

x+y-(t+1)z=2t.

(5 pont)

megoldás, statisztika


B-jelű feladatok

A beküldési határidő 2005. június 15-én LEJÁRT.


B. 3822. Az (a;b;c) számhármassal egy lépésben a következőt lehet tenni: tetszőlegesen felcserélhetjük a számokat, vagy lecserélhetjük az (a;b;2a+2b-c) számhármasra. El lehet-e jutni ilyen lépésekkel a (2;5;13) számhármasból az (1;3;8) számhármasba?

(4 pont)

megoldás, statisztika


B. 3823. Legyenek x és y olyan egész számok, melyekre teljesül, hogy 4x+5y =7. Határozzuk meg 5|x|-3|y| legkisebb értékét.

(3 pont)

megoldás, statisztika


B. 3824. Egy tetraéder minden csúcsát tükrözzük a szemközti lap súlypontjára. Mutassuk meg, hogy a tükörképek által meghatározott tetraéder térfogata legalább négyszerese az eredeti tetraéder térfogatának.

(4 pont)

megoldás, statisztika


B. 3825. Az n olyan pozitív egész, amelyre 2n+1 is és 3n+1 is négyzetszám. Bizonyítsuk be, hogy n osztható 40-nel.

(4 pont)

megoldás, statisztika


B. 3826. Milyen négyszög az alaplapja annak a csonkagúlának, amelynek bármelyik két testátlója metszi egymást?

(4 pont)

megoldás, statisztika


B. 3827. Az AD szakasz érinti az ABC háromszög körülírt körét, az AC szakasz pedig az ABD háromszög körülírt körét. Mutassuk meg, hogy

AC2.BD=AD2.BC.

(4 pont)

megoldás, statisztika


B. 3828. Igaz-e, hogy ha egy négyszög oldalainak szorzata megegyezik a területének négyzetével, akkor a négyszögnek van legalább két derékszöge?

(4 pont)

megoldás, statisztika


B. 3829. Legyenek a1, a2, ..., an pozitív számok. Igazoljuk, hogy


\frac{a_1^2}{a_1+a_2}+\frac{a_2^2}{a_2+a_3}+\ldots+\frac{a_{n-1}^2}{a_{n-1}+a_n}+
\frac{a_n^2}{a_n+a_1}\ge\frac{1}{2}(a_1+a_2+\ldots+a_n).

(5 pont)

megoldás, statisztika


B. 3830. Tekintsük az ABC háromszög AB oldalára befelé rajzolt ABDE négyzet és a BC oldalára befelé rajzolt BCGH négyzet középpontját, továbbá az AC és a DH szakaszok felezőpontját. Milyen idomot határoz meg az így kapott négy pont?

(5 pont)

megoldás, statisztika


B. 3831. A ,,kockás'' papíron adott egy 2005 egység oldalhosszúságú négyzet, amelynek oldalai rácsegyenesek. Rajzoljunk a négyzetbe egy olyan önmagát át nem metsző zárt töröttvonalat, amelynek minden szakasza rácsegyenes mentén halad és az összes olyan rácsponton pontosan egyszer megy át, amelyik a négyzet belsejében vagy annak határán fekszik. Mutassuk meg, hogy a töröttvonal által határolt sokszög területe nagyobb, mint a négyzet területének fele.

(5 pont)

megoldás, statisztika


A-jelű feladatok

A beküldési határidő 2005. június 15-én LEJÁRT.


A. 374. Az x1\gex2\ge...\gexn>0 és y1\gey2\ge...\geyn>0 számokra tetszőleges 0<k\len esetén

\prod_{i=1}^kx_i\ge\prod_{i=1}^ky_i.

Bizonyítsuk be, hogy

\sum_{i=1}^nx_i\ge\sum_{i=1}^ny_i.

(5 pont)

statisztika


A. 375. Adjuk meg az összes olyan f\colon\mathbb{R}\to\mathbb{R} folytonos függvényt, amelyre minden x,y\in\mathbb{R} esetén

f (x+y+f(xy))=xy+f(x+y).

(5 pont)

statisztika


A. 376. Az (a;b;c) számhármassal egy lépésben a következőt lehet tenni: tetszőlegesen felcserélhetjük a számokat, vagy lecserélhetjük az (a;b;2a+2b-c) számhármasra. El lehet-e jutni ilyen lépésekkel az (1;21;42) számhármasból az (5;13;42) számhármasba?

(5 pont)

statisztika


A matematika gyakorlatok és feladatok megoldásait többféleképpen is beküldheted.

  • Megszerkesztheted vagy feltöltheted az Elektronikus munkafüzetben;
  • Elküldheted postán a szerkesztőség címére:
    KöMaL Szerkesztőség
    Budapest 112, Pf. 32.  1518.

(Az interneten keresztül történő beküldésről olvasd el tájékoztatónkat)