![]() | English Issue, December 2002 | |||
Previous page | Contents | Next page | ORDER FORM |
New advanced problems - competition A
(302-304.)
A. 302. Given the unit square ABCD and the point P on the plane, prove that
3AP+5CP+√5(BP+DP)≥6√2.
A. 303. x, y are non-negative numbers, and x3+y4≤x2+y3. Prove that
x3+y3≤2.
A. 304. Find all functions R+↦R+, such that
f(x+y)+f(x).f(y)=f(xy)+f(x)+f(y)?