A B. 4063. feladat (2008. február) |
B. 4063. Aladár és Béla a 81 lapos pakliból felváltva kiválasztanak egy-egy SET kártyát és leteszik az asztalra. Az veszít, aki után az asztalon szereplő kártyák között először lesz SET. Aladár kezd. Kinek van nyerő stratégiája?
(Lásd cikkünket:Variációk a SET témájára.)
Deme-Farkas Rita és Csikvári Péter
(4 pont)
A beküldési határidő 2008. március 17-én LEJÁRT.
Megoldás: Tegyük fel, hogy elsőnek Aladár az A, Béla a B lapot választja. Ekkor egyértelműen létezik egy ezektől különböző O lap, amelyre A,B és O egy SET-et alkot. Tetszőleges XO lap esetén egyértelműen létezik egy lap, amelyre O,X és X' SET-et alkot, nevezzük ezt X tükörképének. Nyilván X' tükörképe X lesz, A és B pedig egymás tükörképei.
Nem nehéz meggondolni, hogy az O-tól különböző X,Y,Z lapok pontosan akkor alkotnak SET-et, ha X',Y',Z' tükörképeik SET-et alkotnak. Valóban, válasszuk ki a négy közül valamelyik tulajdonságot, és jelölje p,q,r e tulajdonság három jellemző értékét (pl. ha a szóban forgó tulajdonság a kártyán látható alakzatok színe, akkor ). Tegyük fel először hogy a tulajdonságban X,Y és Z megegyeznek, és legyen ez a közös érték mondjuk p. Ha -ban az O lap értéke is p, akkor ugyanez az X',Y',Z' lapokra is igaz lesz, ha pedig p-től különböző (mondjuk q), akkor a tulajdonságra nézve X',Y' és Z' értéke is ugyanaz lesz (r). A másik esetben, ha -ra nézve X,Y,Z mind különböznek, mondjuk (X)=p, (Y)=q, (Z)=r, és (O) mondjuk p, akkor (X')=p, (Y')=r és (Z')=q miatt -ra nézve X',Y' és Z' is a három különböző értéket fogják reprezentálni.
Ezek után már nem nehéz megmutatni, hogy Bélának van nyerő stratégiája: csak annyit kell tennie, hogy ha Aladár az XO lapot választja, akkor Béla a következő lépésben az X' lapot választja (ha Aladár az O lapot választja, akkor már el is veszítette a játékot). Indukcióval ugyanis beláthatjuk, hogy ha Béla így játszik, akkor Béla minden lépése után az asztalon lévő mindegyik kártyával együtt annak tükörképe is az asztalon lesz, tehát ha Aladár az X lapot választja, akkor X'-nek még a pakliban kell lennie, Béla ezt ki tudja tehát választani. Ha az X lap elhelyezése után még nem jött létre SET az asztalon, akkor az X' lap elhelyezése után is fennáll ez a helyzet, ugyanis ha az asztalon lévő X',Y,Z lapok SET-et alkotnának, akkor miatt X,Y',Z' is SET-et alkotnának, de az elmondottak miatt az Y',Z' lapoknak már X elhelyezése előtt az asztalon kellett volna lennie, ami ellentmond annak a feltevésnek, hogy Aladár lépése után még nem jött létre SET. Mivel az O lap A,B-vel együtt SET-et alkot, és a kártyák száma véges, Béla ezen stratégiája mellett Aladár előbb-utóbb olyan helyzetbe kerül, hogy csak olyan lapot tud elhelyezni az asztalra, ami két már ott lévő lappal együtt SET-et alkot.
Statisztika:
41 dolgozat érkezett. 4 pontot kapott: Aczél Gergely, Bálint Dániel, Blázsik Zoltán, Bodor Bertalan, Bunth Gergely, Csere Kálmán, Damásdi Gábor, Dudás 002 Zsolt, Éles András, Fonyó Dávid, Frankl Nóra, Kiss 232 Dóra, Kiss 243 Réka, Muszka Balázs, Nagy 648 Donát, Palincza Richárd, Perjési Gábor, Szabó 895 Dávid, Szőke Nóra, Tóth 369 László Márton, Varga 171 László, Wagner Zsolt, Zelena Réka. 0 pontot kapott: 18 versenyző.
A KöMaL 2008. februári matematika feladatai