Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A B. 4508. feladat (2013. január)

B. 4508. Mutassuk meg, hogy ha a, b és c pozitív számok, akkor


a^{\frac 34}+b^{\frac 34}+c^{\frac 34} >{(a+b+c)}^{\frac 34}.

Jim Boyd (USA) nyomán

(4 pont)

A beküldési határidő 2013. február 11-én LEJÁRT.


Megoldási ötlet: Az x\mapsto x^{\frac 34} függvény konkáv.

 

1. megoldás. Az f(x)=x^{\frac 34} függvény szigorúan konkáv. Ezért u,v>0 esetén


\frac{f(u)}{u} =
\frac{f(u)-f(0)}{u-0} > 
\frac{f(u+v)-f(0)}{(u+v)-0} > 
\frac{f(u+v)-f(v)}{(u+v)-v} =
\frac{f(u+v)-f(v)}{u}.

Az u-val szorozva, és átrendezve:

f(u)+f(v)>f(u+v).(1)

Az (1)-et az u=a, v=b, illetve az u=a+b, v=c esetekre alkalmazva:

f(a)+f(b)+f(c)>f(a+b)+f(c)>f(a+b+c)


  a^{\frac34}+b^{\frac 34}+c^{\frac 34} > {(a+b+c)}^{\frac 34} .

 

2. megoldás. Azt fogjuk felhasználni, hogy ha 0<t<1, akkor t3/4>t.

Legyen x=\frac{a}{a+b+c}, y=\frac{b}{a+b+c} és z=\frac{c}{a+b+c}. Ekkor 0<x,y,z<1 és x+y+z=1, így


\frac{a^{\frac 34}+b^{\frac 34}+c^{\frac 34}}{(a+b+c)^{\frac 34}} =
x^{\frac 34}+y^{\frac 34}+z^{\frac 34} >
x+y+z=1.


Statisztika:

89 dolgozat érkezett.
4 pontot kapott:58 versenyző.
3 pontot kapott:3 versenyző.
2 pontot kapott:2 versenyző.
1 pontot kapott:1 versenyző.
0 pontot kapott:25 versenyző.

A KöMaL 2013. januári matematika feladatai