Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A B. 4817. feladat (2016. október)

B. 4817. Oldjuk meg a következő egyenletrendszert a valós számok halmazán:

\(\displaystyle x + y + z = xyz = 8,\)

\(\displaystyle \frac 1x- \frac 1y- \frac 1z= \frac 18.\)

Javasolta: Kovács Béla (Szatmárnémeti)

(4 pont)

A beküldési határidő 2016. november 10-én LEJÁRT.


Megoldás. A következő átalakítások segítségével a megadott feltételeket használva \(\displaystyle x\) értékére kapunk egy egyenletet:

\(\displaystyle \frac{1}{x}-\frac{1}{8}=\frac{1}{y}+\frac{1}{z}=\frac{y+z}{yz}=\frac{8-x}{\frac{8}{x}}=\frac{8x-x^2}{8}.\)

Ebből (\(\displaystyle 8x\))-szel való szorzás és rendezés után egy harmadfokú egyenletet kapunk:

\(\displaystyle x^3-8x^2-x+8=0.\)

A bal oldalt szorzattá alakítva:

\(\displaystyle (x-8)(x+1)(x-1)=0,\)

vagyis \(\displaystyle x\) értéke \(\displaystyle -1,1\) vagy \(\displaystyle 8\) lehet.

Ha \(\displaystyle x=-1\), akkor \(\displaystyle y+z=9\) és \(\displaystyle yz=-8\), ezért \(\displaystyle y\) és \(\displaystyle z\) a \(\displaystyle t^2-9t-8\) polinom gyökei: \(\displaystyle \frac{9\pm \sqrt{9^2+4\cdot 8}}{2}=\frac{9\pm \sqrt{113}}{2}\). Az \(\displaystyle (x=-1; y= \frac{9+ \sqrt{113}}{2}; z=\frac{9-\sqrt{113}}{2}), (x=-1; y= \frac{9- \sqrt{113}}{2}; z=\frac{9+\sqrt{113}}{2})\) számhármasok valóban megoldást adnak, hiszen ezekre a harmadik egyenlet is teljesül:

\(\displaystyle \frac{1}{x}-\frac{1}{y}-\frac{1}{z}=\frac{1}{x}-\frac{y+z}{yz}=-1-\frac{9}{-8}=\frac{1}{8}.\)

Ha \(\displaystyle x=1\), akkor \(\displaystyle y+z=7\) és \(\displaystyle yz=8\), ezért \(\displaystyle y\) és \(\displaystyle z\) a \(\displaystyle t^2-7t+8\) polinom gyökei: \(\displaystyle \frac{7\pm \sqrt{7^2-4\cdot 8}}{2}=\frac{7\pm \sqrt{17}}{2}\). Az \(\displaystyle (x=1; y= \frac{7+ \sqrt{17}}{2}; z=\frac{7-\sqrt{17}}{2}), (x=1; y= \frac{7- \sqrt{17}}{2}; z=\frac{7+ \sqrt{17}}{2})\) számhármasok valóban megoldást adnak, hiszen ezekre a harmadik egyenlet is teljesül:

\(\displaystyle \frac{1}{x}-\frac{1}{y}-\frac{1}{z}=\frac{1}{x}-\frac{y+z}{yz}=1-\frac{7}{8}=\frac{1}{8}.\)

Végül, ha \(\displaystyle x=8\) lenne, akkor \(\displaystyle y+z=0\) és \(\displaystyle yz=1\) lenne, azonban ez lehetetlen, hiszen egy nemnegatív és egy nempozitív szám szorzata nem lehet pozitív. Vagyis az egyenletrendszernek csak a korábban talált négy megoldása van.


Statisztika:

155 dolgozat érkezett.
4 pontot kapott:133 versenyző.
3 pontot kapott:14 versenyző.
2 pontot kapott:1 versenyző.
1 pontot kapott:4 versenyző.
0 pontot kapott:3 versenyző.

A KöMaL 2016. októberi matematika feladatai