Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A C. 1030. feladat (2010. április)

C. 1030. Az x, y valós számokra igaz, hogy x+3y=12 és x\ge2y\ge0. Milyen értékeket vehet fel x+2y?

(5 pont)

A beküldési határidő 2010. május 10-én LEJÁRT.


Megoldás. Ha \(\displaystyle x+3y=12\), akkor \(\displaystyle y=\frac{12-x}{3}\). Az \(\displaystyle x\ge 2y\ge 0\) szerint \(\displaystyle y\ge 0\) és \(\displaystyle y\le \frac 12 x\). Legyen \(\displaystyle x+2y=C\), azaz \(\displaystyle y=\frac{C-x}{2}\). Ábrázoljuk a lehetséges (x, y) párokat koordnátarendszerben.

Az \(\displaystyle y=\frac{12-x}{3}\) egyenes azon pontjai lesznek jók, amik a satírozott területbe eső szakaszon vannak. \(\displaystyle C\) értékeket meghatározhatjuk, ha ezen szakasz pontjain át -1/2 meredekségű egyeneseket húzunk: az \(\displaystyle y\) tengelyt \(\displaystyle C/2\)-ben metszik. Az összes egyenes egy ``szalagot'' határoz meg, amelyeket a szakasz végpontjain át húzott egyenesek határoznak meg. E szerint \(\displaystyle C\) értékének felét ez a két határolóegyenes határozza meg. A szakasz végpontjait az \(\displaystyle x+3y=12, x=2y\) és az \(\displaystyle x+3y=12, y=0\) egyenletrendszerekből számolhatjuk ki. A felső végpont a \(\displaystyle \left(\frac{24}{5},\ \frac{12}{5}\right)\), az alsó végpont \(\displaystyle (12,\ 0)\). Tehát \(\displaystyle 9,6\le C=x+2y\le 12\).


Statisztika:

200 dolgozat érkezett.
5 pontot kapott:143 versenyző.
4 pontot kapott:9 versenyző.
3 pontot kapott:12 versenyző.
2 pontot kapott:4 versenyző.
1 pontot kapott:12 versenyző.
0 pontot kapott:15 versenyző.
Nem versenyszerű:5 dolgozat.

A KöMaL 2010. áprilisi matematika feladatai