[755] merse | 2016-12-23 00:02:44 |
Sziasztok! Indult egy fejtörő pontverseny, ahol havonta jelennek meg olyan vadonatúj fejtörő feladványok, amik a KöMaL matek és fizika versenyébe nem illenek bele, de a matek, logika és fizika témakörébe tartoznak: duplapluszjo.blogspot.hu/2016/12/fejtoro-pontversenyek.html itt az első feladvány, egy karácsonyi aktualitás: duplapluszjo.blogspot.hu/2016/12/karacsonyi-gyufafeladvany.html
|
|
[754] epsilon | 2016-11-16 16:24:48 |
Egy humoros megoldás erre: "A csendélet címe: Négyzet három vonallal" Kiraksz a három vonallal egy 4-est, ez 2-nek a négyzete, tehát kiraktál három vonallal (gyufaszállal) egy négyzetet, a kettőnek a négyzetét! :-)
|
Előzmény: [124] Kemény Legény, 2005-02-01 17:07:46 |
|
[753] jonas | 2015-10-30 15:49:25 |
Ebből van egy másik ismert változat is. E szerint a matematikusnak három lánya van, az egész években mért koruk szorzata 72, az összege annyi, ahány ablak van a szemben lévő házon. Mivel ebből a másik matematikus nem tudja kitalálni, hány éves a három lány, az első elárulja azt is, hogy a legidősebb lány most kezdett el zongorázni.
|
Előzmény: [752] janos15, 2015-10-29 19:53:04 |
|
[752] janos15 | 2015-10-29 19:53:04 |
Két matematikus... Két matematikus találkozik, akik nagyon rég nem látták egymást. Beülnek egy kávézóba és beszélgetni kezdenek. Mi újság nálad régi barátom? Képzeld van három fiam! Gratulálok! Mennyi idősek? Azt nem mondom meg, de azt elárulom, hogy az évszámaik szorzata 36. Ebből még nem tudom megállapítani. Azt is megnondom, hogy évszámaik összege megegyezik a szemközti ház ablakainak számával. Ebből még mindíg nem tudom. A legidősebb fiam vörös hajú és szemüveges. Köszönöm, most már tudom mennyi idősek!
Hány évesek a gyerekek?
|
|
[751] lorantfy | 2015-08-01 23:10:02 |
Itt az a gond, hogy bármit mondok arról, hogy mit lehet csinálni és mit jelent egy mérés, az jelentősen megkönnyíti a feladat megoldását. Ismerem ezt az érzést, mikor tiltakozni kezd az agyunk, hogy ez nem lehet megcsinálni, de ahogy a pánik elül, jönnek új gondolatok arról, mit lehet még bevetni. Szóval, szerintem ez egy jó kis feladat és meg is oldottátok, anélkül, hogy ki kellett volna egészítenem valamivel a leírást.Gratulálok w és RG!
|
|
[750] Róbert Gida | 2015-07-27 22:58:26 |
Így valóban kijön, de ehhez az is kell, hogy már serpenyőben levő cukrot használjunk a kiegyensúlyozáshoz. Erre én nem is gondoltam, programom sem engedte meg.
Itt a mérések végén összeöntés sem kell, ez sem derült ki az eredeti feladatban, hogy ezt lehet-e.
Egy másik megoldás, a módosított programmal: solved in 3 steps.
1. 4600 4600
2. 2400 2400
3. 200 0
|
Előzmény: [749] w, 2015-07-27 22:12:22 |
|
|
[748] Róbert Gida | 2015-07-27 21:23:37 |
Biztos, hogy 3 mérés elegendő? Fejben 4 méréses megoldást találtam, majd írtam rá egy programot, ami viszont nem talál 3 méréses megoldást, de 4-et igen, egy ilyen méréssorozat: solved in 4 steps.
1. 0 200
2. 0 400
3. 0 800
4. 200 800
Az első szám, hogy milyen súly áll a bal serpenyőben, a második, hogy milyen a jobb serpenyőben (200g-os súlyt is használhatjuk). Utánaszámolva itt a negyedik mérés végén 600;600;800 és 7000 grammos súlyaink lesznek, összeöntve a 600,600 és 800 grammosat éppen 2 kg-ot kapunk. Egy másik (lényegesen különböző) megoldás:
solved in 4 steps.
1. 0 200
2. 0 400
3. 200 600
4. 0 1000
Egyáltalán mi számít 1 mérésnek? Nálam: kiválasztom hova rakom fel a 200g-os súlyt (ha felrakom egyáltalán), majd a többi már ismert súlyú cukrokat hova pakolom (ha felrakom), végül kiválasztok egyetlen zsákot, amivel egyensúlyba hozom a mérleget (egyensúlyig töltök), ez a "mérés". A mérések legvégén pedig kiválasztok néhányat amiket összeöntve kapom a 2000 gramm cukrot.
Ami még trükk lehet itt: ha a bal serpenyőbe öntök mondjuk 200 gramm és 400 gramm cukrot, akkor egyben lesz 600 grammom, ezáltal 2 ismert súlyból lesz 1 ismert súlyom, a 600 gramm (programom is így számol). De mi van, ha a 9 kg-os cukrot kiöntöm, és a zsákba öntöm a 200 grammot, akkor még mindig megmarad a 2 ismert súlyom (200 g a zsákban, 400 g azon kívül, a bal serpenyőben). Igen ám, de a zsáknak is "lehet súlya", amit nyilván nem ismerünk, és akkor nem szórakozhatunk vele. Persze több, egyforma súlyú (és térfogatú) zsákkal újra működne ez a trükk (mindkét serpenyőbe ugyanannyi, esetleg üres zsákot rakjunk).
|
Előzmény: [746] lorantfy, 2015-07-26 19:51:24 |
|
[747] jonas | 2015-07-27 10:17:37 |
Rendes mérleg nincs, de azt azért fel lehet tenni, hogy van elég sok egyforma zsák vagy edény, amibe kilenc kiló cukor belefér, és kisegítő személyzet, aki elmosogatja őket?
|
Előzmény: [746] lorantfy, 2015-07-26 19:51:24 |
|
[746] lorantfy | 2015-07-26 19:51:24 |
Egy zsákban 9 kg cukor van. Egy kétkarú serpenyős mérleg és egy 200 g-os súly áll rendelkezésünkre. Hogyan lehet kimérni 2 kg cukrot 3 méréssel?
|
|
|
[744] Sirpi | 2014-05-20 16:30:29 |
A Te változatod nem pont ugyanaz, ugyanis ha &tex;\displaystyle n-1&xet; fekete kalap van, akkor mindenki betippeli, hogy "FEHÉR" és valaki tuti eltalálja.
Esetleg úgy lehetne, hogy mindenki vagy tippel vagy passzol, és akkor nyernek, ha nincs rossz tipp és van jó.
|
Előzmény: [743] w, 2014-05-19 20:18:34 |
|
[743] w | 2014-05-19 20:18:34 |
Ha az első nem biztos a dolgában, akkor volt előtte fehér. Ha a második nem tudja biztosan, akkor az első fehér is, fekete is lehet, egyik esetben sem tud biztosat mondani, feltéve, hogy az első nem tudatja vele, hogy ő bizonytalan. Ha viszont tudja, hogy az első bizonytalan, akkor tudja, hogy ő vagy az előtte lévő fehér; ha előtte fekete van, ő biztos fehér. Vagyis a harmadik ember fehér sapkában volt.
A megfogalmazás egészen pontatlan, de a feladat tényleg könnyű volt. Szerintem inkább így kéne mondani (és általánosabban):
Van &tex;\displaystyle n&xet; ember egy oszlopban, mindenki csak az előtte lévőket látja. Egy &tex;\displaystyle n&xet; fehér és &tex;\displaystyle n-1&xet; fekete kalapból álló halmazból (amit megmutatunk nekik) mi kiválasztunk &tex;\displaystyle n&xet;-et, és az &tex;\displaystyle n&xet; ember fejére tesszük őket. Az &tex;\displaystyle n&xet; ember hangosan tippel saját sapkaszínére, tetszőleges sorrendben. Nyernek, ha van legalább egy helyes tipp. Adjunk meg biztos nyerési stratégiát, amit előre megbeszélhetnek.
(Jó, elismerem, sablonos, de legalább érthető a leírás.)
|
Előzmény: [742] Róbert Gida, 2014-05-19 19:26:25 |
|
[742] Róbert Gida | 2014-05-19 19:26:25 |
Könnyű logika feladat: 3 embert elfogtak a kannibálok. Mind a hármat odakötözték három fához és kalapokat adtak rájuk. 3 fehér kalap van és 2 fekete. A kannibálok azt mondták, hogy megmenekülnek, ha legalább az egyikük megmondja milyen kalap van saját magán ( a saját kalapjukat ők nem látják ), viszont úgy vannak a fához kötözve, hogy az 1. látja a másik kettőt, a 2. csak egy embert lát ( a 3. embert ), a 3. pedig senkit. Az első nem tudta megmondani milyen van rajta ( úgy, hogy látta a mögötte levő két embert ) , a második sem tudta ( úgy, hogy látta a mögötte levőt ), a harmadik viszont meg tudta mondani! Hogyan és milyen színű volt a kalapja?
|
|
[741] Prof. Mózes | 2014-05-10 12:05:35 |
Gondolom ismert mindenkinek, amikor az 1 2 3 4 5 6 7 8 9 számjegyek közé műveletei jeleket téve kell végeredményként kihozni a 100-at. A feladatnak nagyon sokféle variációja és megoldása létezik. Lehet zárójelek nélkül, lehet csak egyjegyű számokat használva, amikor bármely két szám közé kell rakni jelet. De mi a helyzet, ha az a kérdés, hogy az 1000-et hogyan lehet kihozni? Kérlek NE írjátok ide a megoldást, hanem inkább küldjétek be a megfejtést augusztus 20-ig, mert a megfejtők kközött értékes nyeremények kerülnek kisorsolásra az alábbi blog szerkesztője által: duplapluszjo.blogspot.hu
A feladat itt került kitűzésre: duplapluszjo.blogspot.hu/2014/04/sorsolas-6472.html
|
|
[740] Maga Péter | 2014-01-04 12:49:30 |
Képzeld magad az egyik bennszülött helyébe! Megszólalt az utazó. Tudod, hogy van kék szemű? Igen. Azt is tudod, hogy ez a többiek fejében is lejátszódik. Tehát tudod, hogy mindenki tudja, hogy (...). Azt is tudod, hogy ez is mindenki fejében lejátszódik. Tehát azt is tudod, hogy mindenki tudja, hogy mindenki tudja, hogy (...). Stb.
|
Előzmény: [739] Zilberbach, 2014-01-03 16:52:49 |
|
[739] Zilberbach | 2014-01-03 16:52:49 |
Lehet hogy kicsit nehéz a fölfogásom, de az eredeti első föladat-ismertetésedből idézve:
"A búcsúvacsorán a következőt mondja az egész törzs előtt: 'nagy meglepetésemre szolgál, hogy a világ ezen részén is találkozni kék szemű emberrel'.
Hogyan következik ebből a legutóbbi állításod:
"Az utazó így is ad új információt: 'mindenki tudja, hogy mindenki tudja, hogy ... mindenki tudja, hogy van kékszemű', ahol a 'mindenki tudja, hogy' 99-szer szerepel."
|
Előzmény: [738] Maga Péter, 2014-01-02 22:18:59 |
|
[738] Maga Péter | 2014-01-02 22:18:59 |
Mindenki ismeri mindenki más szemszínét.
Mindenki tudja, hogy mindenki ismeri mindenki más szemszínét.
Mindenki tudja, hogy mindenki tudja, hogy mindenki ismeri mindenki más szemszínét. Stb.
Az utazó így is ad új információt: 'mindenki tudja, hogy mindenki tudja, hogy ... mindenki tudja, hogy van kékszemű', ahol a 'mindenki tudja, hogy' 99-szer szerepel.
|
Előzmény: [735] Erben Péter, 2014-01-02 20:04:03 |
|
|
|
[735] Erben Péter | 2014-01-02 20:04:03 |
Úgy fogalmaztad meg a fejtörőt, hogy mind ismerik a többiek szemszínét, de a sajátjukat nem.
Ezt úgy kell érteni, hogy egymásról nem tudják, hogy a többiek is ismerik mindenki szemszínét? Mert csak ebben az esetben látom, hogy a vándor új információt adott nekik.
|
Előzmény: [709] Maga Péter, 2013-12-29 13:44:14 |
|
|
[733] Zilberbach | 2014-01-02 18:49:53 |
Igaz, a két kék-szemű is sajátos eset bizonyos mértékig, nem csak az egy. De visszatérve az eredeti fölálláshoz: amikor 100 kék-szemű is van - akkor mindenki számára világos hogy van több kék-szemű is (és kék szempár'-ok is, akármit is értesz ezen). Aki az eredeti fölállásban nem tudja, hogy mindenki tudja azt, hogy több kék-szemű is van, az messze van attól hogy okosnak nevezhessük. Márpedig az eredeti feladat szerint mindenki okos.
|
Előzmény: [732] Maga Péter, 2014-01-02 17:08:14 |
|
[732] Maga Péter | 2014-01-02 17:08:14 |
Olvasd el [727-728]-at még egyszer. Nem az a lakók plusz információja, hogy van kékszemű, hanem az erre vonatkozó hosszú láncok.
Érdemes két kékszeműre meggondolni. Akkor is mindenki tudta, hogy van kék szempár. De azt nem tudta mindenki, hogy 'mindenki tudja, hogy van kék szempár' (a két kékszemű nem tudta ezt). Viszont az utazó megszólalása után már mindenki tudja, hogy 'mindenki tudja, hogy van kék szempár'.
|
Előzmény: [731] Zilberbach, 2014-01-02 15:24:14 |
|
[731] Zilberbach | 2014-01-02 15:24:14 |
Van egy lényeges különbség:
Ha csak egy kék szemű ember van a szigetlakók között, akkor neki olyan információt jelent látogató megjegyzése, hogy van kék-szemű ember a szigeten - amit eddig nem tudhatott. Ha viszont több kék-szemű is van a szigetlakók között, akkor a látogató semmi olyat nem mondott, amit ne tudtak volna addig is.
|
Előzmény: [730] Maga Péter, 2014-01-02 12:07:52 |
|