Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Az A. 439. feladat (2007. november)

A. 439. Igazoljuk, hogy tetszőleges 1>a_1>a_2>\ldots>a_n>0 valós számokra


\frac{a_1^2}{1-a_1} + \frac{a_2^2}{a_1-a_2} + \frac{a_3^2}{a_2-a_3} +
\ldots + \frac{a_n^2}{a_{n-1}-a_n} > \frac12(a_1+2a_2+3a_3+\ldots+na_n)-1.

(5 pont)

A beküldési határidő 2007. december 17-én LEJÁRT.


Megoldás. Definiáljuk az a0=1 számot is, és legyen L=\sum_{i=1}^n\frac{a_i^2}{a_{i-1}-a_i}, R=\sum_{i=1}^nia_i valamint S=\sum_{i=1}^na_i. Azt kell bizonyítanunk, hogy L>\frac12R-1.

A Cauchy-Schwarz egyenlőtlenséget alkalmazva az \frac{a_i}{\sqrt{a_{i-1}-a_i}} és (2i+1)\sqrt{(a_{i-1}-a_i)} sorozatokra,


L = \sum_{i=1}^n\left(\frac{a_i}{\sqrt{a_{i-1}-a_i}}\right)^2 \ge
\frac{\displaystyle\left(\sum_{i=1}^n
\frac{a_i}{\sqrt{a_{i-1}-a_i}}\cdot(2i+1)\sqrt{(a_{i-1}-a_i)}\right)^2}%
{\displaystyle\sum_{i=1}^n\left((2i+1)\sqrt{(a_{i-1}-a_i)}\right)^2} =
\frac{\displaystyle\left(\sum_{i=1}^n(2i+1)a_i\right)^2}%
{\displaystyle\sum\limits_{i=1}^n(2i+1)^2(a_{i-1}-a_i)} =


= \frac{(2R+S)^2}{\displaystyle
9a_0+\sum_{i=1}^{n-1}\big((2i+3)^2-(2i+1)^2\big)a_i-(2n+1)^2a_n} >
\frac{(2R+S)^2}{\displaystyle 9+\sum_{i=1}^n(8i+8)a_i} =
\frac{4R^2+4RS+S^2}{8R+8S+9} >


> \frac{4R^2+4RS}{8R+8S+9} =
\frac12R-\frac{9R}{16R+16S+18} 
> \frac12R-\frac9{16} > \frac12R-1.


Statisztika:

6 dolgozat érkezett.
5 pontot kapott:Lovász László Miklós, Tomon István, Wolosz János.
3 pontot kapott:1 versenyző.
0 pontot kapott:1 versenyző.
Nem versenyszerű:1 dolgozat.

A KöMaL 2007. novemberi matematika feladatai