Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Az A. 505. feladat (2010. március)

A. 505. Az ABCD húrnégyszögben O1 és O2 az ABC, illetve az ABD háromszögbe írt kör középpontja. Az O1O2 egyenes a BC egyenest E-ben, az AD egyenest F-ben metszi.

(a) Igazoljuk, hogy létezik egy olyan k kör, ami E-ben, illetve F-ben érinti a BC és az AD egyenest.

(b) Mutassuk meg, hogy k érinti az ABCD négyszög köré írt kört is.

Javasolta: Nagy János (Budapest)

(5 pont)

A beküldési határidő 2010. április 12-én LEJÁRT.


Megoldásvázlat. (a) Jelöljük a körülírt kört k0-lal, és legyen G,H,I rendre a kör AB, BC, DA íveinek felezőpontja. Az ABC háromszögben AH és CG szögfelezők, tehát O1 ezek metszéspontja; hasonlóan O2 a BI és DG húrok metszéspontja. Ismert továbbá, hogy O1 és O2 rajta van a G középpontú, A-n és B-n átmenő körön. Az O1O2G háromszög tehát egyenlő szárú.

A CO1E és DO2F háromszögekben


ECO_1\angle = \frac12 BCA\angle = \frac12 BDA\angle = O_2DF \angle

és

CO1E\angle=GO1O2\angle=O1O2G\angle=FO2D\angle,

tehát FEC\angle=DFE\angle. Ebből pedig következik, hogy létezik a BC egyenest E-ben, az AD egyenest F-ben érintő k kör.

(b) Legyen az AB és EF egyenesek metszéspontja P, a PG egyenes és k0 második metszéspontja T. (Ha AB és EF párhuzamosak, akkor P a két egyenes ideális pontja és T=G.)

A Pascal-tételt az ABCGTH (piros) hatszögre alkalmazva kapjuk, hogy AB\capGT=P, CG\capHA=O1 és BC\capTH egy egyenesen van; következésképp a TH egyenes átmegy az E ponton. Hasonlóan, a Pascal-tételt a BADGTI (zöld) hatszögre alkalmazva kapjuk, hogy a TI egyenes átmegy az F ponton.

A k0 körhöz H-ban és I-ben, illetve a k-hoz E-ben és F-ben húzott érintők párhuzamosak. Ezért a HE egyenes és az IF egyenes is átmegy a két kör külső hasonlósági pontján. Tehát HE\capIF=T a két kör külső hasonlósági pontja. De a hasonlósági pont csak akkor lehet rajta valamelyik körön, ha a két kör érinti egymást.

(A fenti megoldás Ilja Bogdanovtól származik.)


Statisztika:

8 dolgozat érkezett.
5 pontot kapott:Bodor Bertalan, Éles András, Frankl Nóra, Nagy 235 János, Nagy 648 Donát.
3 pontot kapott:1 versenyző.
2 pontot kapott:1 versenyző.
1 pontot kapott:1 versenyző.

A KöMaL 2010. márciusi matematika feladatai