Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Az A. 595. feladat (2013. szeptember)

A. 595. Legyen p pozitív prímszám, amihez van olyan a pozitív egész, amire 2a2-1 osztható p-vel. Igazoljuk, hogy vannak olyan b és c egész számok, amelyekre p=2b2-c2.

(5 pont)

A beküldési határidő 2013. október 10-én LEJÁRT.


Megoldásvázlat. A megoldás fő eszköze a következő lemma.

Lemma. Léteznek olyan x,y egész számok, amikre ax\equiv y\pmod{p} és 0<|x|,|y|<\sqrt{p}.

Bizonyítás. Legyen N=\big[\sqrt{p}\big], és helyezzük el a 0,a,2a,...,Na modulo p maradékosztályokat egy p kerületű kör mentén. Ezek a pontok a kört N+1 ívre osztják, ezért biztosan van az ívek között legfeljebb \frac{p}{N+1}<\sqrt{p} hosszúságú; valamelyik két 0\lei<j\leN indexre az ia és ja pontok távolsága kisebb, mint \sqrt{p}. Legyen x=j-i és y\equivxa=(ja-ia); ekkor tehát 0<x\le N<\sqrt{p} és elérhető, hogy |y|<\sqrt{p}. A konstrukció szerint x biztosan nem osztható p-vel; ebből következik, hogy y sem lehet 0.

Azt állítjuk, hogy például a b=y, c=x választás megfelelő.

Mivel b,c\ne0 és a 2 nem négyzetszám, 2b2-c2\ne0.

A feladat feltétele szerint


2b^2-c^2 = 2y^2-x^2 \equiv 2(ax)^2-x^2 = (2a^2-1)x^2 \equiv 0
\pmod{p},

vagyis 2b2-c2 osztható p-vel.

Továbbá -p<2b2-c2<2p. Tehát, a 2b2-c2 egyetlen lehetséges értéke a p.


Statisztika:

17 dolgozat érkezett.
5 pontot kapott:Csernák Tamás, Ioan Laurentiu Ploscaru, Janzer Barnabás, Kabos Eszter, Kúsz Ágnes, Maga Balázs, Nagy Bence Kristóf, Petrényi Márk, Simon 047 Péter, Szabó 789 Barnabás, Tossenberger Tamás, Williams Kada.
4 pontot kapott:Mattia Tiso.
3 pontot kapott:1 versenyző.
0 pontot kapott:3 versenyző.

A KöMaL 2013. szeptemberi matematika feladatai