Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Az A. 660. feladat (2016. január)

A. 660. Az \(\displaystyle ABCD\) érintőnégyszög beírt köre \(\displaystyle \omega\), az \(\displaystyle ABC\) és az \(\displaystyle ACD\) háromszögekbe írt körök középpontjai \(\displaystyle I\), illetve \(\displaystyle J\). Legyen \(\displaystyle T\) és \(\displaystyle U\) az a két pont az \(\displaystyle \omega\) körnek az \(\displaystyle ABC\), illetve az \(\displaystyle ACD\) háromszögbe eső ívén, amelyre az \(\displaystyle ATC\), illetve az \(\displaystyle ACU\) körök érintik \(\displaystyle \omega\)-t. Mutassuk meg, hogy az \(\displaystyle AC\), \(\displaystyle IU\) és \(\displaystyle JT\) szakaszok egy ponton mennek át.

(5 pont)

A beküldési határidő 2016. február 10-én LEJÁRT.


Statisztika:

3 dolgozat érkezett.
5 pontot kapott:Williams Kada.
2 pontot kapott:1 versenyző.
0 pontot kapott:1 versenyző.

A KöMaL 2016. januári matematika feladatai