![]() |
Az A. 661. feladat (2016. január) |
A. 661. Legyen K rögzített pozitív egész szám. Legyen (a0,a1,…) az a számsorozat, amelyre a0=−1 és bármely n pozitív egészre
∑i0,i1,…,iK≥0i0+i1+…+iK=nai1⋅…⋅aiKi0+1=0.
Mutassuk meg, hogy n≥1 esetén an>0.
(5 pont)
A beküldési határidő 2016. február 10-én LEJÁRT.
Statisztika:
1 dolgozat érkezett. 5 pontot kapott: Williams Kada.
A KöMaL 2016. januári matematika feladatai
|