Loading [MathJax]/jax/output/HTML-CSS/jax.js
Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem A. 774. (March 2020)

A. 774. Let O be the circumcenter of triangle ABC, and D be an arbitrary point on the circumcircle of ABC. Let points X, Y and Z be the orthogonal projections of point D onto lines OA, OB and OC, respectively. Prove that the incenter of triangle XYZ is on the Simson-Wallace line of triangle ABC corresponding to point D.

Submitted by Lajos Fonyó, Keszthely

(7 pont)

Deadline expired on April 14, 2020.


Statistics:

8 students sent a solution.
7 points:Amaan Khan, Beke Csongor, Hegedűs Dániel, Várkonyi Zsombor, Weisz Máté.
6 points:Bán-Szabó Áron, Seres-Szabó Márton.
1 point:1 student.

Problems in Mathematics of KöMaL, March 2020