Problem A. 774. (March 2020)
A. 774. Let O be the circumcenter of triangle ABC, and D be an arbitrary point on the circumcircle of ABC. Let points X, Y and Z be the orthogonal projections of point D onto lines OA, OB and OC, respectively. Prove that the incenter of triangle XYZ is on the Simson-Wallace line of triangle ABC corresponding to point D.
Submitted by Lajos Fonyó, Keszthely
(7 pont)
Deadline expired on April 14, 2020.
Statistics:
8 students sent a solution. 7 points: Amaan Khan, Beke Csongor, Hegedűs Dániel, Várkonyi Zsombor, Weisz Máté. 6 points: Bán-Szabó Áron, Seres-Szabó Márton. 1 point: 1 student.
Problems in Mathematics of KöMaL, March 2020
|