Az A. 779. feladat (2020. május) |
A. 779. Adott két rögzített kör, \(\displaystyle \Omega\) és a belsejében \(\displaystyle \omega\). Az \(\displaystyle \omega\) középpontja \(\displaystyle I\). Az \(\displaystyle \Omega\) körön mozog egy \(\displaystyle P\) pont. A \(\displaystyle P\)-ből \(\displaystyle \omega\)-hoz húzott érintők második metszéspontja \(\displaystyle \Omega\)-val \(\displaystyle Q\), illetve \(\displaystyle R\). Az \(\displaystyle IQR\) kör második metszéspontjai a \(\displaystyle PI\), \(\displaystyle PQ\) és \(\displaystyle PR\) egyenesekkel rendre \(\displaystyle J\), \(\displaystyle S\), illetve \(\displaystyle T\). A \(\displaystyle J\) tükörképe az \(\displaystyle ST\) egyenesre \(\displaystyle K\). Mutassuk meg, hogy a különböző \(\displaystyle PK\) egyenesek egy ponton mennek át.
(7 pont)
A beküldési határidő 2020. június 10-én LEJÁRT.
Statisztika:
3 dolgozat érkezett. 7 pontot kapott: Bán-Szabó Áron, Beke Csongor, Weisz Máté.
A KöMaL 2020. májusi matematika feladatai