Loading [MathJax]/jax/output/HTML-CSS/jax.js
Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem A. 796. (March 2021)

A. 796. Let ABCD be a cyclic quadrilateral. Let lines AB and CD intersect in P, and lines BC and DA intersect in Q. The feet of the perpendiculars from P to BC and DA are K and L, and the feet of the perpendiculars from Q to AB and CD are M and N. The midpoint of diagonal AC is F.

Prove that the circumcircles of triangles FKN and FLM, and the line PQ are concurrent.

Based on a problem by Ádám Péter Balogh, Szeged

(7 pont)

Deadline expired on April 12, 2021.


Statistics:

8 students sent a solution.
7 points:Arató Zita, Balogh Ádám Péter, Bán-Szabó Áron, Diaconescu Tashi, Füredi Erik Benjámin, Török Ágoston.
6 points:Sztranyák Gabriella.
2 points:1 student.

Problems in Mathematics of KöMaL, March 2021