A B. 3818. feladat (2005. április) |
B. 3818. Egy tetraédernek van egy olyan csúcsa, amelyből kiinduló három él mindegyike egység hosszúságú, és közülük bármely kettő 45 fokos szöget zár be egymással. Számítsuk ki a tetraéder térfogatát.
Cserti József (Budapest) javaslata alapján
(4 pont)
A beküldési határidő 2005. május 17-én LEJÁRT.
Megoldás. Legyen az adott csúcs O. A tertraéder O-val szemközti lapja egy ABC szabályos háromszög, melynek a élhosszát meghatározhatjuk, ha az OAB háromszögre felírjuk a koszinusz-tételt:
Az ABC háromszög magassága , vagyis a háromszög területe . Ha a háromszög középpontját S jelöli, akkor AS=2m/3, vagyis AS2=a2/3. Az OSA derékszögű háromszögre a Pithagorasz-tételt felírva számíthatjuk ki a tetraéder h magasságát:
A tetraéder térfogata tehát
Statisztika:
138 dolgozat érkezett. 4 pontot kapott: 95 versenyző. 3 pontot kapott: 30 versenyző. 2 pontot kapott: 4 versenyző. 1 pontot kapott: 6 versenyző. 0 pontot kapott: 3 versenyző.
A KöMaL 2005. áprilisi matematika feladatai