Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A B. 4353. feladat (2011. április)

B. 4353. Legyen A egy pozitív egész szám, B pedig jelölje az A számjegyeinek fordított sorrendben való felírásával keletkező számot. Mutassuk meg, hogy az A+B és A-B számok közül legalább az egyik osztható 11-gyel.

Javasolta: Mészáros József (Jóka)

(3 pont)

A beküldési határidő 2011. május 10-én LEJÁRT.


Megoldás. Legyenek \(\displaystyle A\) számjegyei \(\displaystyle a_n, a_{n-1},\ldots, a_0\); ekkor \(\displaystyle A=10^na_n+10^{n-1}a_{n-1}+\ldots+a_0\) és \(\displaystyle B=10^na_0+\ldots+10a_{n-1}+a_n\). Ha \(\displaystyle n\) páratlan, akkor az

\(\displaystyle A+B=\sum_{i=0}^n(10^i+10^{n-i})a_i\)

összeg minden tagja osztható \(\displaystyle 11\)-gyel, hiszen \(\displaystyle i<n/2\) esetén

\(\displaystyle 10^i+10^{n-i}=10^{i}(10^{n-2i}+1),\)

ahol \(\displaystyle n-2i\) páratlan lévén \(\displaystyle 10+1\mid 10^{n-2i}+1\), \(\displaystyle i>n/2\) esetén pedig

\(\displaystyle 10^i+10^{n-i}=10^{n-i}(10^{2i-n}+1),\)

ahol \(\displaystyle 10+1\mid 10^{2i-n}+1\), hiszen \(\displaystyle 2i-n\) páratlan. Ezért ilyenkor \(\displaystyle A+B\) osztható 11-gyel.

Hasonlóképpen, ha \(\displaystyle n\) páros, akkor \(\displaystyle n-2i\) és \(\displaystyle 2i-n\) is páros, így az

\(\displaystyle A-B=\sum_{i=0}^n(10^i-10^{n-i})a_i\)

szám 11-gyel való osztatósága leolvasható a

\(\displaystyle 10^i-10^{n-i}=-10^{i}(10^{n-2i}-1)\qquad (i< n/2),\)

illetve a

\(\displaystyle 10^i-10^{n-i}=10^{n-i}(10^{2i-n}-1)\qquad (i\ge n/2)\)

átalakításokról.


Statisztika:

118 dolgozat érkezett.
3 pontot kapott:87 versenyző.
2 pontot kapott:16 versenyző.
1 pontot kapott:7 versenyző.
0 pontot kapott:7 versenyző.
Nem versenyszerű:1 dolgozat.

A KöMaL 2011. áprilisi matematika feladatai