Loading [MathJax]/jax/output/HTML-CSS/jax.js
Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A B. 4371. feladat (2011. május)

B. 4371. Igazoljuk, hogy


\frac{1}{\sin^2{\frac{\pi}{14}}} + \frac{1}{\sin^2{\frac{3\pi}{14}}} +
\frac{1}{\sin^2{\frac{5\pi}{14}}} = 24.

Javasolta: Kovács Béla (Szatmárnémeti)

(5 pont)

A beküldési határidő 2011. június 10-én LEJÁRT.


Megoldás. Felhasználva a 2sin2x=1cos2x azonosságot, felszorzás után a bizonyítandó egyenlőséget

2(1cosπ7)(1cos3π7)+2(1cosπ7)(1cos5π7)+

+2(1cos3π7)(1cos5π7)=24(1cosπ7)(1cos3π7)(1cos5π7)

alakra hozhatjuk. A 2cosαcosβ=cos(α+β)+cos(αβ) azonosság és a cosx=cos(x)=cos(π+x)=cos(πx) összefüggés alapján a bal oldalon álló kifejezés

64cosπ74cos3π74cos5π7+(cos4π7+cos2π7)+(cos6π7+cos4π7)+

+(cos8π7+cos2π7)=66cosπ7+6cos2π76cos3π7,

míg a jobb oldalon álló

2424cosπ724cos3π724cos5π7+12(cos4π7+cos2π7)+12(cos6π7+cos4π7)+

+12(cos8π7+cos2π7)12(cos6π7+cos4π7)cos3π7=2448cosπ7+

+48cos2π748cos3π76{(cos9π7+cos3π7)+(cos7π7+cosπ7)}=

=3056cosπ7+56cos2π756cos3π7

alakba írható át. átrendezés és 12-vel való leosztás után tehát a bizonyítandó egyenlőség az

12cosπ7+2cos2π72cos3π7=0

alakot ölti. Ezt azonban a fenti átalakításokhoz hasonlóan

1+(cos6π7+cos8π7)+(cos2π7+cos12π7)+(cos4π7+cos10π7)=0

formában is felírhatjuk, ami viszont speciális esete annak az azonosságnak, amelyet az áprilisi szám B. 4361. feladatának megoldása végén igazoltunk.


Statisztika:

20 dolgozat érkezett.
5 pontot kapott:Baráti László, Boér Lehel, Bogár Blanka, Damásdi Gábor, Dinev Georgi, Dolgos Tamás, Fonyó Viktória, Frittmann Júlia, Gyarmati Máté, Hajnal Máté, Lenger Dániel, Máthé László, Nagy 111 Miklós, Perjési Gábor, Strenner Péter, Szabó 928 Attila, Tossenberger Tamás, Tran Trong Hoang Tuan, Zilahi Tamás.
1 pontot kapott:1 versenyző.

A KöMaL 2011. májusi matematika feladatai