Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A B. 4414. feladat (2012. január)

B. 4414. Egy asztalon 98 pálca van, a hosszuk 1,2,3,...,98 egység. Andrea és Béla a következő játékot játsszák: felváltva elvesznek egy-egy általuk választott pálcát; a játékot Andrea kezdi. A játéknak akkor van vége, amikor pontosan három pálca marad az asztalon. Ha a megmaradó három pálcából összeállítható egy háromszög, akkor Andrea nyer, különben Béla. Kinek van nyerő stratégiája?

(4 pont)

A beküldési határidő 2012. február 10-én LEJÁRT.


Megoldás. A játéknak a 95. lépés után lesz vége, vagyis azután, hogy Andrea elvette a 48. pálcáját is. Nyilván el tudja érni azt, hogy az \(\displaystyle 1,2,3, \dots, 48\) egység hosszú pálcák a játék során mind eltávolításra kerüljenek. Ha a megmaradt pálcák hossza \(\displaystyle a<b<c\), akkor minden ilyen esetben \(\displaystyle a+b\ge 49+50>98\ge c\) fennáll, vagyis \(\displaystyle a,b,c\) kielégítik a háromszög-egyenlőtlenséget. Ezek szerint Andreának van nyerő stratégiája.


Statisztika:

128 dolgozat érkezett.
4 pontot kapott:121 versenyző.
3 pontot kapott:2 versenyző.
2 pontot kapott:1 versenyző.
0 pontot kapott:3 versenyző.
Nem versenyszerű:1 dolgozat.

A KöMaL 2012. januári matematika feladatai