A C. 1079. feladat (2011. április) |
C. 1079. Pezsgőspoharunk csonkakúp alakú, az alapkör sugara 1 cm, a fedőkör sugara 4 cm, a magassága 6 cm (lásd az ábrát). Milyen magasságig kell tölteni a poharat, ha egy fél pohár italt szeretnénk inni?
(5 pont)
A beküldési határidő 2011. május 10-én LEJÁRT.
Megoldás. Egészítsük ki a poharat adó csonkakúpot kúppá, ennek keresztmetszete látható az ábrán. A csonkakúpot kúppá egy olyan kúppal egészítettük ki, mely alapkörének sugara 1cm, magassága \(\displaystyle x\), térfogatát jelöljük \(\displaystyle V_1\)-gyel. Töltsük \(\displaystyle m\) magasságig a poharat pezsgővel. A kiegészítő kúp és a poharat tartalmazó kúp hasonlóak, a hasonlóság aránya 1:4, így a magasságaikra \(\displaystyle x:(6+x)=1:4\), ahonnan \(\displaystyle x=2\)(cm); a pezsgővel töltött pohárrészre a (kúpok) hasonlóságból pedig \(\displaystyle r:1=(m+2):2\). A pohár űrtartalma \(\displaystyle V_0=\frac 13 \pi(4^2\cdot 8-1^2 \cdot 2)=42\pi (cm^3)\). A feladat szerint \(\displaystyle 21\pi (cm^3)\) pezsgőt töltöttünk: \(\displaystyle 21\pi (cm^3)=\frac 13 \pi \left((\frac{m+2}2)^2 \cdot (m+2) -1^2 \cdot 2\right)\), ahonnan \(\displaystyle m\approx 4,38\)(cm).
Statisztika:
135 dolgozat érkezett. 5 pontot kapott: 78 versenyző. 4 pontot kapott: 25 versenyző. 3 pontot kapott: 7 versenyző. 2 pontot kapott: 17 versenyző. 1 pontot kapott: 6 versenyző. 0 pontot kapott: 1 versenyző. Nem versenyszerű: 1 dolgozat.
A KöMaL 2011. áprilisi matematika feladatai