|
A C. 1376. feladat (2016. október) |
C. 1376. Az \(\displaystyle x^2+px+q=0\) egyenlet gyökei 0-tól különböző egész számok. Mutassuk meg, hogy \(\displaystyle p^2+{(q-1)}^2\) összetett szám.
(5 pont)
A beküldési határidő 2016. november 10-én LEJÁRT.
Megoldás. Írjuk fel a Viéte-formulákat az \(\displaystyle x^2+px+q=0\) másodfokú egyenlethez:
\(\displaystyle p=-(x_1+x_2 ),\)
\(\displaystyle q=x_1 x_2.\)
Ezeket behelyettesítve a vizsgálandó kifejezésbe:
\(\displaystyle p^2 +(q-1)^2=(x_1+x_2 )^2+(x_1 x_2-1)^2=\)
\(\displaystyle =x_1^2+2x_1 x_2+x_2^2+x_1^2 x_2^2-2x_1 x_2+1=\)
\(\displaystyle =x_1^2 x_2^2 +x_1^2+x_2^2+1=x_1^2 (x_2^2+1)+x_2^2+1=(x_2^2+1)(x_1^2+1).\)
Az egyenlet gyökei 0-tól különböző egész számok, így a kifejezés értéke biztosan összetett szám.
Statisztika:
68 dolgozat érkezett. |
5 pontot kapott: | Agócs Katinka, Árvai Balázs, Balbisi Mirjam, Benkő Glória, Cseh Noémi, Dankowsky Anna Zóra, Deák Péter, Demeter Gergő, Édes Lili, Erdődi Ádám Károly, Ézsiás Máté István, Galvács Ákos, Gera Dóra, Inges Zénó, János Zsuzsa Anna, Karácsony Márton, Kassai Levente, Kis 999 Alexandra, Kocsis Ábel, Kocsis Júlia, Komoróczy Ádám, Kormányos Hanna Rebeka, Likavcsán János, Mácz Andrea, Magyar 257 Boglárka, Malák Péter, Mészáros Melinda, Moldován Péter, Nagy 911 Viktória, Nagy Odett, Nagy Olivér, Németh Csilla Márta, Ondrik Ákos, Perényi Gellért, Pszota Máté, Radó Albert, Rittgasszer Ákos, Sántha 001 Balázs, Simon Ákos, Szajbély Zsigmond, Szalay Gergő, Szécsi Adél Lilla, Szilágyi Éva, Tanács Viktória, Tatai Mihály, Thuróczy Mylan, Török Boldizsár, Varga 274 Tamás, Wolff Vilmos, Zsombó István. |
4 pontot kapott: | 5 versenyző. |
3 pontot kapott: | 3 versenyző. |
2 pontot kapott: | 3 versenyző. |
1 pontot kapott: | 2 versenyző. |
0 pontot kapott: | 2 versenyző. |
Nem versenyszerű: | 3 dolgozat. |
A KöMaL 2016. októberi matematika feladatai