Az I. 389. feladat (2015. december) |
I. 389. Az atlétika női versenyei közül a legösszetettebb a hétpróba. Ezzel foglalkozó adatbázis-kezelési feladat volt az I. 338-as. Egy verseny eredményeinek kiértékelését most táblázatkezelővel végezzük el.
A hétpróba hét versenyszáma: 100 m gátfutás, 200 m és 800 m futás, magasugrás, távolugrás, súlylökés és gerelyhajítás. A verseny pontozásos rendszerű. A versenyszámokat nemzetközi ponttáblázat alapján értékelik, amelyben minden elért eredménynek megvan a maga pontszáma.
A versenyszám pontszámának kiszámítására a következő képletet használják a versenyző \(\displaystyle X\) eredményét figyelembe véve:
\(\displaystyle \text{pont}=\big[A\cdot {|X-B|}^C\big] \)
(ahol \(\displaystyle [~]\) a kifejezés egészrészét, \(\displaystyle |~|\) az abszolút értékét jelenti).
Az \(\displaystyle A\), \(\displaystyle B\) és \(\displaystyle C\) konstansok a Nemzetközi Atlétikai Szövetség által közölt, versenyszámonként eltérő konstansok.
A 2012. évi nyári olimpiai játékok hétpróba verseny adatait és az előző táblázatban lévő konstansokat rögzítettük a hetforras.txt tabulátorral tagolt, UTF-8 kódolású állományban.
1. Töltsük be a hetforras.txt szövegfájlt a táblázatkezelőbe az A1-es cellától kezdődően. (Az A1:I4 tartományban a fenti táblázat transzponált változata található.) A munkalap neve legyen eredmények. Munkánkat hetproba néven mentsük el a táblázatkezelő alapértelmezett formátumában.
2. Hozzunk létre új munkalapot pontszámok néven, és a minta szerinti fejlécet alakítsuk ki az első sorban.
3. Ezen a munkalapon az A2:B40 cellákban - az eredmények munkalap A7:B45 celláira hivatkozva - jelenítsük meg a 39 versenyző nevét és nemzetiségét.
4. A C2:I40 cellákban, a fent megadott számítási módszer szerint, egyetlen képlettel és annak másolásával határozzuk meg a versenyzők versenyszámonként elért pontszámát. Ha a versenyeredmény cella üres, akkor a kifejezés szerint az erre hivatkozó pontszám cellája is legyen üres.
5. A J2:J40 cellákban adjuk meg a versenyzők versenyszámonként elért pontszámainak összegét, ha mind a hét versenyszámból pontszámmal rendelkeznek, különben a ,,Nincs'' felirat jelenjen meg.
A következő feladatokat az eredmények munkalapon végezzük el.
6. Az M2 cellában határozzuk meg függvény segítségével a versenyt teljesítők számát. A versenyt az teljesítette, aki mind a hét versenyszámban pontokat szerzett.
7. A K8:N17 cellákban képlettel adjuk meg az első tíz helyezett versenyző pontszámát, nevét és nemzetiségének rövidítését. A hétpróba győztese a legtöbb pontot elérő versenyző (feltételezhetjük, hogy azonos pontszámokat nem értek el a versenyzők).
8. A C50:I50 cellákban határozzuk meg a versenyszámonkénti győztesek nevét. Azonos eredmények esetén elegendő egyikőjük nevét megadnunk.
9. A hétpróba versenyen nemzetenként többen is részt vehetnek. A K20:L20 cella alatt soroljuk fel a versenyzők száma szerint csökkenő sorrendben, hogy az egyes nemzetekből hány induló volt. A megoldásban a K oszlopban nem szükséges a képletek használata, megfelelő a nemzetek hárombetűs rövidítésének kigyűjtése is.
10. Az eredmények munkalap celláit formázzuk a minta szerint.
Beküldendő egy tömörített i389.zip állományban a munkafüzet (hetproba.xlsx, hetproba.odt), valamint egy rövid dokumentáció, amelyből kiderül az alkalmazott táblázatkezelő neve és verziószáma.
Letölthető fájl: hetforras.txt
(10 pont)
A beküldési határidő 2016. január 11-én LEJÁRT.
Megoldásokról:
Két feladat volt, amit többen eltévesztettek. A 7.e-t nem, amelynek a szövege a következő volt:
A K8:N17 cellákban képlettel adjuk meg az első tíz helyezett versenyző pontszámát, nevét és nemzetiségének rövidítését.
A megoldásokban az első tíz helyezett nevét többen nem képlettel határozták meg, hanem rendezéssel, amely pontszám változás esetén nem frissül. Egy lehetséges megoldás a =NAGY() függvény használata.
A 8. feladatra is több téves megoldás érkezett. A futás számoknál, nem a maximális idejűek a győztesek természetesen. (A dobó számoknál természetesen a maximális távolságot elérőek nyertek.) Helyesen a pontszámok maximumát kellett volna vizsgálni.
Minta megoldás:
Pécz Bálint 11. osztályos tanuló (Budapesti Németh László Gimnázium, Budapest) megoldása: hetproba.xlsx
Statisztika:
11 dolgozat érkezett. 10 pontot kapott: Kovács 246 Benedek, Nagy Ábel, Németh 729 Gábor, Olexó Gergely, Pécz Bálint, Szakali Benedek. 9 pontot kapott: Kelkó Balázs. 8 pontot kapott: 1 versenyző. 7 pontot kapott: 2 versenyző. 3 pontot kapott: 1 versenyző.
A KöMaL 2015. decemberi informatika feladatai