A K. 775. feladat (2023. szeptember) |
K. 775. Egy cukrász két 2 cm, egy 6 cm és egy 8 cm oldalélű marcipánkocka összeragasztásával egy nagyobb testet épített úgy, hogy egy-egy illesztésnél az egyik marcipánkocka teljes oldala ráfeküdt a másik kocka egy lapjára. A kész testből kivághatunk magunknak egy téglatestet, de csak olyan sík mentén vághatunk, amely illeszkedik valamelyik kocka lapjára. Mekkora a legnagyobb térfogatú marcipántégla, amit így kaphatunk?
(5 pont)
A beküldési határidő 2023. október 10-én LEJÁRT.
Megoldás. Az biztos, hogy a 6 cm élű kockát a 8 cm élű kocka egyik lapjához illesztjük. A 2 cm-es kockákkal viszont többféleképpen is befejezhetjük az építményt. Nézzük, hogy élhossz szerint milyen téglatesteket kaphatunk.
A legnagyobb élhossz, amit elérhetünk 8 + 6 + 2 + 2 = 18 cm, viszont ekkor a téglatest másik két éle csak 2-2 cm lehet, így a térfogat 72 cm\(\displaystyle ^{3}\).
A következő legnagyobb élhossz 8 + 6 + 2 = 16 cm, ekkor a másik két él 2 cm, illetve 4 cm lehet, a térfogat ekkor 128 cm\(\displaystyle ^{3}\).
14 cm élhosszúságú téglatestet is kaphatunk, ha a 2 cm-es kockákat levágjuk a téglatestről, így a másik két él lehet 6-6 cm, a térfogat pedig 504 cm\(\displaystyle ^{3}\).
12 cm élhosszúságú téglatestnél a másik két él 8 cm és 2 cm lehet, így a térfogat 192 cm\(\displaystyle ^{3}\).
10 cm élhossznál pedig 8 cm és 4 cm is lehet a másik két él, így a térfogat 320 cm\(\displaystyle ^{3}\).
Végül lehetséges az is, hogy a 6 cm élű kockát egy lapjával a 8 cm élű kockára helyezzük, ezután a két darab 2 cm-es kockát a már meglevő építmény egy-egy lapjára ragasztjuk a feltételeknek megfelelően. Ez többféleképpen is megvalósítható, bárhogyan is helyeztük el előzetesen a 6 cm-es kockát. Ha ezzel kész vagyunk, akkor a 8 cm-es kockáról levágjuk a megfelelő kockalappal párhuzamos sík mentén a 6 cm-es kockát és a két darab 2 cm-es kockát. Így speciális téglatestként megmarad a 8 cm-es kocka, ennek térfogata \(\displaystyle 8\cdot 8 \cdot 8=512\) cm\(\displaystyle ^{3}\). A legnagyobb elérhető térfogat tehát az \(\displaystyle 512\) cm\(\displaystyle ^{3}\).
Statisztika:
152 dolgozat érkezett. 5 pontot kapott: Bencze Anna Borbála, Farkas Simon, Ferencz Kevin, Fülöp Magdaléna, Gyerkó Anna, Halmosi Dávid, Kámán-Gausz Péter, Kapiller Ákos Péter, Kubica Ádám, Lupkovics Lázár, Papp Emese Petra, Pázmándi Renáta , Schmidt Marcell, Szabó Máté. 4 pontot kapott: Aranyi Laura, Debreczeni Huba, Hornyák Zalán Zétény, Kóródy Vera, Kőhidi Kata, Olajos Anna, Sipos Dániel Sándor, Sipos Levente, Szekeres Anina, Tamás Attila Gábor, Tóth Luca. 3 pontot kapott: 17 versenyző. 2 pontot kapott: 15 versenyző. 1 pontot kapott: 23 versenyző. 0 pontot kapott: 6 versenyző. Nem számítjuk a versenybe a születési dátum vagy a szülői nyilatkozat hiánya miatt: 66 dolgozat.
A KöMaL 2023. szeptemberi matematika feladatai