Loading [MathJax]/jax/output/HTML-CSS/jax.js
Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A P. 5160. feladat (2019. október)

P. 5160. Rögzített szigetelőállvány tetejére erősített kicsiny, d=2 cm átmérőjű fémgömb töltése Q=8109 C. Vékony, =1 m hosszú, az ábra szerint felfüggesztett szigetelőszál végére erősített ugyanakkora semleges fémgömb tömege m=1 g. A fonalat α=60-ig kitérítjük, majd elengedjük. A két gömb centrálisan, abszolút rugalmasan ütközik. Az ütközés során az elektromos mező energiája nem változik, energiadisszipáció nincsen.

A kiindulási helyzeténél mennyivel kerül magasabbra a fonálinga kis gömbje, ha a légellenállás is elhanyagolható?

(Lásd még a kapacitásokról szóló cikket lapunk 425. oldalán.)

Közli: Holics László, Budapest

(5 pont)

A beküldési határidő 2019. november 11-én LEJÁRT.


Megoldás. Egy R sugarú, önmagában álló fémgömb kapacitása C=4πε0R. Ha ennek a gömbnek Q töltése van, akkor az elektrosztatikus terének energiája

W=Q22C=Q28πε0R.

Ha olyan két töltött fémgömb esetét vizsgáljuk, amelyek az átmérőjükhöz viszonyítva elég távol vannak egymástól, akkor az egymáshoz viszonyított kapacitása (,,főkapacitása'') elhanyagolhatóan kicsi a szórt kapacitásukhoz képest, és ebben a közelítésben a rendszer elektrosztatikus energiája (lásd az idézett cikket!)

W=Q218πε0R1+Q228πε0R2,

ahol R1=R2=d/2.

Esetünkben a kezdőállapotban Q1=0 és Q2=Q, az ütközés után pedig (a szimmetria és a töltésmegmaradás miatt) Q1=Q2=12Q. Az ütközés után, amikor már ismét elég messze került a két gömb egymástól, a kapacitásuk megint elhanyagolhatóan kicsivé válik, és az energiájuk a szórt kapacitásukból számolható ki. (Közvetlenül az ütközés előtt és után az elektromos megosztás igen erős, emiatt az energia ezekben az állapotokban csak igen bonyolult módon számítható; erre azonban – szerencsére – nincs szükségünk.)

A rendszer elektrosztatikus energiájának megváltozása a fonálinga indítása és ismételt megállása között

ΔW=(12Q)24πε0d+(12Q)24πε0dQ24πε0d=Q28πε0d<0.

A rendszer összes (elektrosztatikus+gravitációs helyzeti) energiája a folyamat során nem változik (a mozgási energia mind a kezdeti, mind pedig a végállapotban nulla), így a fonálinga kis gömbje a kiindulási helyzetéhez viszonyítva

Δh=|ΔW|mg=Q28πε0mgd=1,5 mm

távolsággal kerül magasabbra. (Az eredmény nem függ az inga hosszától.)

Megjegyzés. A megoldás során kihasználtuk, hogy a gömbök érintkezésekor, amikor a töltés fele átáramlik a másik gömbre, nincs energiaveszteség, mert a megosztás miatt a két gömb összeütközésekor már nullára csökkent közöttük a feszültség.

Más a helyzet akkor, amikor egy töltött és egy töltetlen síkkondenzátort kapcsolunk páruzamosan (lemezeiket páronként összeérintjük). Ekkor a kondenzátorok összenergiája lecsökken, az energiaváltozás a hirtelen kisüléskor keletkező szikrázás energiáját, a vezetékekben fejlődő Joule-hőt és elektromágneses sugárzás által elvitt energiát fedezi.

Ha a kondenzátorokat ,,kiméletesen'' érintjük össze, olymódon, hogy előbb a lemezeiket majdnem teljesen összetoljuk (de nem érintjük össze), annyira, hogy a feszültségük szinte nullára csökkenjen, majd a töltésátáramlás után ismét széthúzzuk a lemezeket az eredeti távolságukig. Az elektrosztatikus energia most is lecsökken, de az energiaváltozás éppen megegyezik a lemezek mozgatása közben végzett mechanikai munkával. Ez az eset felel meg a feladatban szereplő két fémgömb összeütközésének, de a gömbkondenzátorokhoz képest azzal az előnnyel rendelkezik, hogy egyszerű módon részletesen végigszámolható.


Statisztika:

17 dolgozat érkezett.
5 pontot kapott:Bokor Endre, Varga Vázsony.
4 pontot kapott:Takács Dóra, Viczián Anna.
3 pontot kapott:12 versenyző.
2 pontot kapott:1 versenyző.

A KöMaL 2019. októberi fizika feladatai