Loading [MathJax]/extensions/TeX/boldsymbol.js
Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Woynarovich Ferenc: A gravitációs többtestprobléma két speciális esete

Amint az jól ismert, egy centrális gravitációs térben egy m tömegű testre (amit nevezzünk bolygónak)

\boldsymbol{F}=-\gamma \frac{mM}{r^3}\boldsymbol{r}

erő hat, tehát a mozgásegyenlete

m\ddot{\boldsymbol{r}}=-\gamma \frac{mM}{r^3}\boldsymbol{r},\quad\quad(1)

ahol M a centrumban elhelyezkedő tömeget, \boldsymbol{r} a mozgó test helyvektorát, \gamma pedig a Newton-féle gravitációs állandót jelöli. (A cikkben azt a gyakorlatot követjük, hogy egy vektort és annak nagyságát ugyanaz a szimbólum jelöli, csak a vektort magát félkövér karakterrel szedjük; így pl. {r} az \boldsymbol{r} vektor nagysága. Egy mennyiség jele fölé tett pont a mennyiség időbeli változásának ütemét jelzi, így \dot{\boldsymbol{r}} a tömegpont sebessége, \ddot{\boldsymbol{r}} pedig a gyorsulása.)

Az (1) egyenlet megoldása ellipszis, parabola vagy hiperbola attól függően, hogy a mozgó test teljes

E=-\gamma \frac{mM} r+\frac 1 2m{(\dot{\boldsymbol{r}})}^2\quad\quad(2)

energiája negatív, nulla vagy pozitív, és az adott kúpszelet (egyik) fókusza éppen a centrumba esik. Ellipszispálya esetén a bolygó keringési ideje

T=2\pi \sqrt{\frac{a^3}{{\gamma M}}},

ahol a az ellipszis nagytengelyének a fele. Ez a leírás (mivel rögzített vonzócentrumot és egyetlen bolygót feltételez) eléggé idealizált, ennek ellenére nagyon pontosan írja le pl. a Naprendszerünk bolygóinak a mozgását. Ennek az az oka, hogy a Naprendszer összes tömegének legnagyobb része (99,87\%-a) a Napban van, a bolygók pályasugarai pedig eléggé eltérnek egymástól, így a bolygók egymásra gyakorolt tömegvonzása, és az a tény, hogy a Nap maga is a közös tömegközéppont körül mozog, csak igen kicsi korrekciót okoz.

A következőkben két olyan esetet tárgyalunk meg részletesen, amelyekben ezek a feltételek nem teljesülnek: megvizsgáljuk, hogyan mozog két közel azonos tömegű égitest (ikercsillag) egymás gravitációs terében, és bemutatjuk a gravitációs háromtest-probléma egy igen speciális, de nagyon szép esetét.

A folytatás a lapban olvasható.