KöMaL Elektronikus Munkafüzet: TeX minitanfolyam
Görög betűk és más szimbólumok
A matematikai képletekhez sokféle szimbólumra,
betűre, reláció- és sok más jelre van szükségünk. A jeleket
természetesen TeX parancsokkal állíthatjuk elő. Azokat a jeleket,
amiket többé-kevésbé a betűkhöz hasonló módon használhatunk, az alábbi
táblázatban foglaltuk össze.
\(\alpha\) \alpha
\(\beta\) \beta
\(\gamma\) \gamma
\(\Gamma\) \Gamma
\(\varGamma\) \varGamma
\(\delta\) \delta
\(\Delta\) \Delta
\(\varDelta\) \varDelta
\(\epsilon\) \epsilon
\(\varepsilon\) \varepsilon
\(\backepsilon\) \backepsilon
\(\zeta\) \zeta
\(\eta\) \eta
\(\theta\) \theta
\(\vartheta\) \vartheta
\(\Theta\) \Theta
\(\varTheta\) \varTheta
\(\iota\) \iota
\(\kappa\) \kappa
\(\varkappa\) \varkappa
\(\lambda\) \lambda
\(\Lambda\) \Lambda
\(\varLambda\) \varLambda
\(\mu\) \mu
\(\nu\) \nu
\(\xi\) \xi
\(\Xi\) \Xi
\(\varXi\) \varXi
\(\omicron\) \omicron
\(\pi\) \pi
\(\varpi\) \varpi
\(\Pi\) \Pi
\(\varPi\) \varPi
\(\rho\) \rho
\(\varrho\) \varrho
\(\sigma\) \sigma
\(\varsigma\) \varsigma
\(\Sigma\) \Sigma
\(\varSigma\) \varSigma
\(\tau\) \tau
\(\upsilon\) \upsilon
\(\Upsilon\) \Upsilon
\(\varUpsilon\) \varUpsilon
\(\phi\) \phi
\(\varphi\) \varphi
\(\Phi\) \Phi
\(\varPhi\) \varPhi
\(\chi\) \chi
\(\psi\) \psi
\(\Psi\) \Psi
\(\varPsi\) \varPsi
\(\omega\) \omega
\(\Omega\) \Omega
\(\varOmega\) \varOmega
\(\aleph\) \aleph
\(\beth\) \beth
\(\gimel\) \gimel
\(\daleth\) \daleth
\(\ell\) \ell
\(\le\) \le
\(\leq\) \leq
\(\leqq\) \leqq
\(\leqslant\) \leqslant
\(\nleq\) \nleq
\(\nleqq\) \nleqq
\(\nleqslant\) \nleqslant
\(\ll\) \ll
\(\lll\) \lll
\(\ge\) \ge
\(\geq\) \geq
\(\geqq\) \geqq
\(\geqslant\) \geqslant
\(\ngeq\) \ngeq
\(\ngeqq\) \ngeqq
\(\ngeqslant\) \ngeqslant
\(\gg\) \gg
\(\ggg\) \ggg
\(\ne\) \ne
\(\neq\) \neq
\(\equiv\) \equiv
\(\approx\) \approx
\(\approxeq\) \approxeq
\(\sim\) \sim
\(\simeq\) \simeq
\(\backsim\) \backsim
\(\backsimeq\) \backsimeq
\(\in\) \in
\(\ni\) \ni
\(\owns\) \owns
\(\notin\) \notin
\(\subset\) \subset
\(\subseteq\) \subseteq
\(\subseteqq\) \subseteqq
\(\subsetneq\) \subsetneq
\(\subsetneqq\) \subsetneqq
\(\sqsubset\) \sqsubset
\(\sqsubseteq\) \sqsubseteq
\(\nsubseteq\) \nsubseteq
\(\nsubseteqq\) \nsubseteqq
\(\Subset\) \Subset
\(\supset\) \supset
\(\supseteq\) \supseteq
\(\supseteqq\) \supseteqq
\(\supsetneq\) \supsetneq
\(\supsetneqq\) \supsetneqq
\(\Supset\) \Supset
\(\sqsupset\) \sqsupset
\(\sqsupseteq\) \sqsupseteq
\(\nsupseteq\) \nsupseteq
\(\nsupseteqq\) \nsupseteqq
\(\prec\) \prec
\(\precapprox\) \precapprox
\(\preccurlyeq\) \preccurlyeq
\(\preceq\) \preceq
\(\precnapprox\) \precnapprox
\(\precneqq\) \precneqq
\(\precnsim\) \precnsim
\(\precsim\) \precsim
\(\nprec\) \nprec
\(\npreceq\) \npreceq
\(\succ\) \succ
\(\succapprox\) \succapprox
\(\succcurlyeq\) \succcurlyeq
\(\succeq\) \succeq
\(\succnapprox\) \succnapprox
\(\succneqq\) \succneqq
\(\succnsim\) \succnsim
\(\succsim\) \succsim
\(\nsucc\) \nsucc
\(\nsucceq\) \nsucceq
\(\leftarrow\) \leftarrow
\(\Leftarrow\) \Leftarrow
\(\Lleftarrow\) \Lleftarrow
\(\longleftarrow\) \longleftarrow
\(\Longleftarrow\) \Longleftarrow
\(\rightarrow\) \rightarrow
\(\Rightarrow\) \Rightarrow
\(\Rrightarrow\) \Rrightarrow
\(\longrightarrow\) \longrightarrow
\(\Longrightarrow\) \Longrightarrow
\(\to\) \to
\(\leftleftarrows\) \leftleftarrows
\(\Leftrightarrow\) \Leftrightarrow
\(\leftrightarrow\) \leftrightarrow
\(\leftrightarrows\) \leftrightarrows
\(\Longleftrightarrow\) \Longleftrightarrow
\(\longleftrightarrow\) \longleftrightarrow
\(\rightleftarrows\) \rightleftarrows
\(\rightrightarrows\) \rightrightarrows
\(\Downarrow\) \Downarrow
\(\downarrow\) \downarrow
\(\Uparrow\) \Uparrow
\(\uparrow\) \uparrow
\(\Updownarrow\) \Updownarrow
\(\updownarrow\) \updownarrow
\(\dashleftarrow\) \dashleftarrow
\(\dashrightarrow\) \dashrightarrow
\(\nRightarrow\) \nRightarrow
\(\nrightarrow\) \nrightarrow
\(\nearrow\) \nearrow
\(\nwarrow\) \nwarrow
\(\searrow\) \searrow
\(\swarrow\) \swarrow
\(\circlearrowleft\) \circlearrowleft
\(\circlearrowright\) \circlearrowright
\(\curvearrowleft\) \curvearrowleft
\(\curvearrowright\) \curvearrowright
\(\downdownarrows\) \downdownarrows
\(\hookleftarrow\) \hookleftarrow
\(\hookrightarrow\) \hookrightarrow
\(\leftarrowtail\) \leftarrowtail
\(\leftrightsquigarrow\) \leftrightsquigarrow
\(\looparrowleft\) \looparrowleft
\(\looparrowright\) \looparrowright
\(\nLeftarrow\) \nLeftarrow
\(\nleftarrow\) \nleftarrow
\(\nLeftrightarrow\) \nLeftrightarrow
\(\nleftrightarrow\) \nleftrightarrow
\(\rightarrowtail\) \rightarrowtail
\(\rightsquigarrow\) \rightsquigarrow
\(\twoheadleftarrow\) \twoheadleftarrow
\(\twoheadrightarrow\) \twoheadrightarrow
\(\upuparrows\) \upuparrows
\(\gggtr\) \gggtr
\(\asymp\) \asymp
\(\angle\) \angle
\(\measuredangle\) \measuredangle
\(\sphericalangle\) \sphericalangle
\(\circ\) \circ
\(\emptyset\) \emptyset
\(\infty\) \infty
\(\prime\) \prime
\(\backprime\) \backprime
\(\exists\) \exists
\(\forall\) \forall
\(\neg\) \neg
\(\times\) \times
\(\otimes\) \otimes
\(\oplus\) \oplus
\(\odot\) \odot
\(\pm\) \pm
\(\mp\) \mp
\(\cap\) \cap
\(\cup\) \cup
\(\setminus\) \setminus
\(\vee\) \vee
\(\wedge\) \wedge
\(\parallel\) \parallel
\(\perp\) \perp
\(\partial\) \partial
\(\cdot\) \cdot
\(\cdots\) \cdots
\(\ldots\) \ldots
\(\dots\) \dots
\(\vdots\) \vdots
\(\ddots\) \ddots
\(\mapsto\) \mapsto
\(\implies\) \implies
\(\impliedby\) \impliedby
\(\iff\) \iff
\(\colon\) \colon
\(\mid\) \mid
\(\blacktriangle\) \blacktriangle
\(\blacktriangledown\) \blacktriangledown
\(\blacktriangleleft\) \blacktriangleleft
\(\blacktriangleright\) \blacktriangleright
\(\bigtriangledown\) \bigtriangledown
\(\bigtriangleup\) \bigtriangleup
\(\ntriangleleft\) \ntriangleleft
\(\ntrianglelefteq\) \ntrianglelefteq
\(\ntriangleright\) \ntriangleright
\(\ntrianglerighteq\) \ntrianglerighteq
\(\triangle\) \triangle
\(\triangledown\) \triangledown
\(\triangleleft\) \triangleleft
\(\trianglelefteq\) \trianglelefteq
\(\triangleq\) \triangleq
\(\triangleright\) \triangleright
\(\trianglerighteq\) \trianglerighteq
\(\vartriangle\) \vartriangle
\(\vartriangleleft\) \vartriangleleft
\(\vartriangleright\) \vartriangleright
\(\yen\) \yen
\(\veebar\) \veebar
\(\circleddash\) \circleddash
\(\dashv\) \dashv
\(\hslash\) \hslash
\(\nVDash\) \nVDash
\(\nVdash\) \nVdash
\(\nvDash\) \nvDash
\(\nvdash\) \nvdash
\(\oslash\) \oslash
\(\vdash\) \vdash
\(\Vdash\) \Vdash
\(\vDash\) \vDash
\(\Vvdash\) \Vvdash
\(\bigoplus\) \bigoplus
\(\biguplus\) \biguplus
\(\boxplus\) \boxplus
\(\dotplus\) \dotplus
\(\uplus\) \uplus
\(\boxminus\) \boxminus
\(\ominus\) \ominus
\(\smallsetminus\) \smallsetminus
\(\bigotimes\) \bigotimes
\(\boxtimes\) \boxtimes
\(\div\) \div
\(\divideontimes\) \divideontimes
\(\leftthreetimes\) \leftthreetimes
\(\ltimes\) \ltimes
\(\rightthreetimes\) \rightthreetimes
\(\rtimes\) \rtimes
\(\backslash\) \backslash
\(\bigodot\) \bigodot
\(\boxdot\) \boxdot
\(\cdotp\) \cdotp
\(\centerdot\) \centerdot
\(\doteq\) \doteq
\(\doteqdot\) \doteqdot
\(\dotplus\) \dotplus
\(\dotsb\) \dotsb
\(\dotsc\) \dotsc
\(\dotsi\) \dotsi
\(\dotsm\) \dotsm
\(\dotso\) \dotso
\(\fallingdotseq\) \fallingdotseq
\(\gtrdot\) \gtrdot
\(\ldotp\) \ldotp
\(\lessdot\) \lessdot
\(\risingdotseq\) \risingdotseq
\(\Im\) \Im
\(\Re\) \Re
\(\clubsuit\) \clubsuit
\(\diamondsuit\) \diamondsuit
\(\heartsuit\) \heartsuit
\(\spadesuit\) \spadesuit
\(\sqcap\) \sqcap
\(\sqcup\) \sqcup
\(\square\) \square
\(\bigsqcup\) \bigsqcup
\(\blacksquare\) \blacksquare
\(\diamond\) \diamond
\(\Diamond\) \Diamond
\(\Cup\) \Cup
\(\bigstar\) \bigstar
\(\bigcirc\) \bigcirc
\(\star\) \star
\(\ulcorner\) \ulcorner
\(\urcorner\) \urcorner
\(\llcorner\) \llcorner
\(\lrcorner\) \lrcorner
\(\diagdown\) \diagdown
\(\diagup\) \diagup
\(\downharpoonleft\) \downharpoonleft
\(\downharpoonright\) \downharpoonright
\(\leftharpoondown\) \leftharpoondown
\(\leftharpoonup\) \leftharpoonup
\(\leftrightharpoons\) \leftrightharpoons
\(\rightharpoondown\) \rightharpoondown
\(\rightharpoonup\) \rightharpoonup
\(\rightleftharpoons\) \rightleftharpoons
\(\rightleftharpoons\) \rightleftharpoons
\(\upharpoonleft\) \upharpoonleft
\(\upharpoonright\) \upharpoonright
\(\circeq\) \circeq
\(\circledast\) \circledast
\(\circledcirc\) \circledcirc
\(\circledR\) \circledR
\(\circledS\) \circledS
\(\Box\) \Box
\(\bullet\) \bullet
\(\Cap\) \Cap
\(\cong\) \cong
\(\digamma\) \digamma
\(\Doteq\) \Doteq
\(\doublebarwedge\) \doublebarwedge
\(\doublecap\) \doublecap
\(\doublecup\) \doublecup
\(\eqsim\) \eqsim
\(\eqslantgtr\) \eqslantgtr
\(\eqslantless\) \eqslantless
\(\eth\) \eth
\(\gnapprox\) \gnapprox
\(\gneq\) \gneq
\(\gneqq\) \gneqq
\(\gnsim\) \gnsim
\(\lnapprox\) \lnapprox
\(\lneq\) \lneq
\(\lneqq\) \lneqq
\(\lnsim\) \lnsim
\(\longmapsto\) \longmapsto
\(\leadsto\) \leadsto
\(\nabla\) \nabla
\(\ncong\) \ncong
\(\nexists\) \nexists
\(\nsim\) \nsim
\(\wp\) \wp
\(\wr\) \wr
\(\therefore\) \therefore
\(\thickapprox\) \thickapprox
\(\thicksim\) \thicksim
\(\smallfrown\) \smallfrown
\(\smallsmile\) \smallsmile
\(\smile\) \smile
\(\space\) \space
\(\pitchfork\) \pitchfork
\(\sharp\) \sharp
\(\shortmid\) \shortmid
\(\shortparallel\) \shortparallel
\(\propto\) \propto
\(\nparallel\) \nparallel
\(\nshortmid\) \nshortmid
\(\nshortparallel\) \nshortparallel
\(\amalg\) \amalg
\(\ast\) \ast
\(\lmoustache\) \lmoustache
\(\rmoustache\) \rmoustache
\(\Game\) \Game
\(\curlyeqprec\) \curlyeqprec
\(\curlyeqsucc\) \curlyeqsucc
\(\curlyvee\) \curlyvee
\(\curlywedge\) \curlywedge
\(\dagger\) \dagger
\(\ddagger\) \ddagger
\(\Finv\) \Finv
\(\flat\) \flat
\(\frown\) \frown
\(\gtrapprox\) \gtrapprox
\(\gtreqless\) \gtreqless
\(\gtreqqless\) \gtreqqless
\(\gtrless\) \gtrless
\(\gtrsim\) \gtrsim
\(\gvertneqq\) \gvertneqq
\(\between\) \between
\(\blacklozenge\) \blacklozenge
\(\bot\) \bot
\(\bowtie\) \bowtie
\(\Bumpeq\) \Bumpeq
\(\bumpeq\) \bumpeq
\(\eqcirc\) \eqcirc
\(\imath\) \imath
\(\jmath\) \jmath
\(\Join\) \Join
\(\land\) \land
\(\lessapprox\) \lessapprox
\(\lesseqgtr\) \lesseqgtr
\(\lesseqqgtr\) \lesseqqgtr
\(\lessgtr\) \lessgtr
\(\lesssim\) \lesssim
\(\S\) \S
Feladat. Állítsd elő ezt a szöveget:
Definíció. Az \(f\) függvény akkor folytonos az \(a\)
pontban, ha minden \(\varepsilon>0\)-hoz létezik olyan \(\delta>0\), hogy
\((a-\delta,a+\delta)\subset D(f)\), és \(\forall x\in(a-\delta,a+\delta)\)
esetén \(|f(x)-f(a)|<\varepsilon\).
↶ előző oldal
⇊ megoldás ⇊
⇈ megoldás ⇈
következő oldal ↷
{\bf Definíció.} Az $f$ függvény akkor folytonos az $a$
pontban, ha minden $\varepsilon>0$-hoz létezik olyan $\delta>0$,
hogy $(a-\delta,a+\delta)\subset D(f)$, és
$\forall x\in(a-\delta,a+\delta)$ esetén $|f(x)-f(a)|<\varepsilon$.
Gyakorló pálya
TeX forrás: