Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

KöMaL Elektronikus Munkafüzet: TeX minitanfolyam

Görög betűk és más szimbólumok

A matematikai képletekhez sokféle szimbólumra, betűre, reláció- és sok más jelre van szükségünk. A jeleket természetesen TeX parancsokkal állíthatjuk elő. Azokat a jeleket, amiket többé-kevésbé a betűkhöz hasonló módon használhatunk, az alábbi táblázatban foglaltuk össze.

\(\alpha\)
\alpha
\(\beta\)
\beta
\(\gamma\)
\gamma
\(\Gamma\)
\Gamma
\(\varGamma\)
\varGamma
\(\delta\)
\delta
\(\Delta\)
\Delta
\(\varDelta\)
\varDelta
\(\epsilon\)
\epsilon
\(\varepsilon\)
\varepsilon
\(\backepsilon\)
\backepsilon
\(\zeta\)
\zeta
\(\eta\)
\eta
\(\theta\)
\theta
\(\vartheta\)
\vartheta
\(\Theta\)
\Theta
\(\varTheta\)
\varTheta
\(\iota\)
\iota
\(\kappa\)
\kappa
\(\varkappa\)
\varkappa
\(\lambda\)
\lambda
\(\Lambda\)
\Lambda
\(\varLambda\)
\varLambda
\(\mu\)
\mu
\(\nu\)
\nu
\(\xi\)
\xi
\(\Xi\)
\Xi
\(\varXi\)
\varXi
\(\omicron\)
\omicron
\(\pi\)
\pi
\(\varpi\)
\varpi
\(\Pi\)
\Pi
\(\varPi\)
\varPi
\(\rho\)
\rho
\(\varrho\)
\varrho
\(\sigma\)
\sigma
\(\varsigma\)
\varsigma
\(\Sigma\)
\Sigma
\(\varSigma\)
\varSigma
\(\tau\)
\tau
\(\upsilon\)
\upsilon
\(\Upsilon\)
\Upsilon
\(\varUpsilon\)
\varUpsilon
\(\phi\)
\phi
\(\varphi\)
\varphi
\(\Phi\)
\Phi
\(\varPhi\)
\varPhi
\(\chi\)
\chi
\(\psi\)
\psi
\(\Psi\)
\Psi
\(\varPsi\)
\varPsi
\(\omega\)
\omega
\(\Omega\)
\Omega
\(\varOmega\)
\varOmega
\(\aleph\)
\aleph
\(\beth\)
\beth
\(\gimel\)
\gimel
\(\daleth\)
\daleth
\(\ell\)
\ell
\(\le\)
\le
\(\leq\)
\leq
\(\leqq\)
\leqq
\(\leqslant\)
\leqslant
\(\nleq\)
\nleq
\(\nleqq\)
\nleqq
\(\nleqslant\)
\nleqslant
\(\ll\)
\ll
\(\lll\)
\lll
\(\ge\)
\ge
\(\geq\)
\geq
\(\geqq\)
\geqq
\(\geqslant\)
\geqslant
\(\ngeq\)
\ngeq
\(\ngeqq\)
\ngeqq
\(\ngeqslant\)
\ngeqslant
\(\gg\)
\gg
\(\ggg\)
\ggg
\(\ne\)
\ne
\(\neq\)
\neq
\(\equiv\)
\equiv
\(\approx\)
\approx
\(\approxeq\)
\approxeq
\(\sim\)
\sim
\(\simeq\)
\simeq
\(\backsim\)
\backsim
\(\backsimeq\)
\backsimeq
\(\in\)
\in
\(\ni\)
\ni
\(\owns\)
\owns
\(\notin\)
\notin
\(\subset\)
\subset
\(\subseteq\)
\subseteq
\(\subseteqq\)
\subseteqq
\(\subsetneq\)
\subsetneq
\(\subsetneqq\)
\subsetneqq
\(\sqsubset\)
\sqsubset
\(\sqsubseteq\)
\sqsubseteq
\(\nsubseteq\)
\nsubseteq
\(\nsubseteqq\)
\nsubseteqq
\(\Subset\)
\Subset
\(\supset\)
\supset
\(\supseteq\)
\supseteq
\(\supseteqq\)
\supseteqq
\(\supsetneq\)
\supsetneq
\(\supsetneqq\)
\supsetneqq
\(\Supset\)
\Supset
\(\sqsupset\)
\sqsupset
\(\sqsupseteq\)
\sqsupseteq
\(\nsupseteq\)
\nsupseteq
\(\nsupseteqq\)
\nsupseteqq
\(\prec\)
\prec
\(\precapprox\)
\precapprox
\(\preccurlyeq\)
\preccurlyeq
\(\preceq\)
\preceq
\(\precnapprox\)
\precnapprox
\(\precneqq\)
\precneqq
\(\precnsim\)
\precnsim
\(\precsim\)
\precsim
\(\nprec\)
\nprec
\(\npreceq\)
\npreceq
\(\succ\)
\succ
\(\succapprox\)
\succapprox
\(\succcurlyeq\)
\succcurlyeq
\(\succeq\)
\succeq
\(\succnapprox\)
\succnapprox
\(\succneqq\)
\succneqq
\(\succnsim\)
\succnsim
\(\succsim\)
\succsim
\(\nsucc\)
\nsucc
\(\nsucceq\)
\nsucceq
\(\leftarrow\)
\leftarrow
\(\Leftarrow\)
\Leftarrow
\(\Lleftarrow\)
\Lleftarrow
\(\longleftarrow\)
\longleftarrow
\(\Longleftarrow\)
\Longleftarrow
\(\rightarrow\)
\rightarrow
\(\Rightarrow\)
\Rightarrow
\(\Rrightarrow\)
\Rrightarrow
\(\longrightarrow\)
\longrightarrow
\(\Longrightarrow\)
\Longrightarrow
\(\to\)
\to
\(\leftleftarrows\)
\leftleftarrows
\(\Leftrightarrow\)
\Leftrightarrow
\(\leftrightarrow\)
\leftrightarrow
\(\leftrightarrows\)
\leftrightarrows
\(\Longleftrightarrow\)
\Longleftrightarrow
\(\longleftrightarrow\)
\longleftrightarrow
\(\rightleftarrows\)
\rightleftarrows
\(\rightrightarrows\)
\rightrightarrows
\(\Downarrow\)
\Downarrow
\(\downarrow\)
\downarrow
\(\Uparrow\)
\Uparrow
\(\uparrow\)
\uparrow
\(\Updownarrow\)
\Updownarrow
\(\updownarrow\)
\updownarrow
\(\dashleftarrow\)
\dashleftarrow
\(\dashrightarrow\)
\dashrightarrow
\(\nRightarrow\)
\nRightarrow
\(\nrightarrow\)
\nrightarrow
\(\nearrow\)
\nearrow
\(\nwarrow\)
\nwarrow
\(\searrow\)
\searrow
\(\swarrow\)
\swarrow
\(\circlearrowleft\)
\circlearrowleft
\(\circlearrowright\)
\circlearrowright
\(\curvearrowleft\)
\curvearrowleft
\(\curvearrowright\)
\curvearrowright
\(\downdownarrows\)
\downdownarrows
\(\hookleftarrow\)
\hookleftarrow
\(\hookrightarrow\)
\hookrightarrow
\(\leftarrowtail\)
\leftarrowtail
\(\leftrightsquigarrow\)
\leftrightsquigarrow
\(\looparrowleft\)
\looparrowleft
\(\looparrowright\)
\looparrowright
\(\nLeftarrow\)
\nLeftarrow
\(\nleftarrow\)
\nleftarrow
\(\nLeftrightarrow\)
\nLeftrightarrow
\(\nleftrightarrow\)
\nleftrightarrow
\(\rightarrowtail\)
\rightarrowtail
\(\rightsquigarrow\)
\rightsquigarrow
\(\twoheadleftarrow\)
\twoheadleftarrow
\(\twoheadrightarrow\)
\twoheadrightarrow
\(\upuparrows\)
\upuparrows
\(\gggtr\)
\gggtr
\(\asymp\)
\asymp
\(\angle\)
\angle
\(\measuredangle\)
\measuredangle
\(\sphericalangle\)
\sphericalangle
\(\circ\)
\circ
\(\emptyset\)
\emptyset
\(\infty\)
\infty
\(\prime\)
\prime
\(\backprime\)
\backprime
\(\exists\)
\exists
\(\forall\)
\forall
\(\neg\)
\neg
\(\times\)
\times
\(\otimes\)
\otimes
\(\oplus\)
\oplus
\(\odot\)
\odot
\(\pm\)
\pm
\(\mp\)
\mp
\(\cap\)
\cap
\(\cup\)
\cup
\(\setminus\)
\setminus
\(\vee\)
\vee
\(\wedge\)
\wedge
\(\parallel\)
\parallel
\(\perp\)
\perp
\(\partial\)
\partial
\(\cdot\)
\cdot
\(\cdots\)
\cdots
\(\ldots\)
\ldots
\(\dots\)
\dots
\(\vdots\)
\vdots
\(\ddots\)
\ddots
\(\mapsto\)
\mapsto
\(\implies\)
\implies
\(\impliedby\)
\impliedby
\(\iff\)
\iff
\(\colon\)
\colon
\(\mid\)
\mid
\(\blacktriangle\)
\blacktriangle
\(\blacktriangledown\)
\blacktriangledown
\(\blacktriangleleft\)
\blacktriangleleft
\(\blacktriangleright\)
\blacktriangleright
\(\bigtriangledown\)
\bigtriangledown
\(\bigtriangleup\)
\bigtriangleup
\(\ntriangleleft\)
\ntriangleleft
\(\ntrianglelefteq\)
\ntrianglelefteq
\(\ntriangleright\)
\ntriangleright
\(\ntrianglerighteq\)
\ntrianglerighteq
\(\triangle\)
\triangle
\(\triangledown\)
\triangledown
\(\triangleleft\)
\triangleleft
\(\trianglelefteq\)
\trianglelefteq
\(\triangleq\)
\triangleq
\(\triangleright\)
\triangleright
\(\trianglerighteq\)
\trianglerighteq
\(\vartriangle\)
\vartriangle
\(\vartriangleleft\)
\vartriangleleft
\(\vartriangleright\)
\vartriangleright
\(\yen\)
\yen
\(\veebar\)
\veebar
\(\circleddash\)
\circleddash
\(\dashv\)
\dashv
\(\hslash\)
\hslash
\(\nVDash\)
\nVDash
\(\nVdash\)
\nVdash
\(\nvDash\)
\nvDash
\(\nvdash\)
\nvdash
\(\oslash\)
\oslash
\(\vdash\)
\vdash
\(\Vdash\)
\Vdash
\(\vDash\)
\vDash
\(\Vvdash\)
\Vvdash
\(\bigoplus\)
\bigoplus
\(\biguplus\)
\biguplus
\(\boxplus\)
\boxplus
\(\dotplus\)
\dotplus
\(\uplus\)
\uplus
\(\boxminus\)
\boxminus
\(\ominus\)
\ominus
\(\smallsetminus\)
\smallsetminus
\(\bigotimes\)
\bigotimes
\(\boxtimes\)
\boxtimes
\(\div\)
\div
\(\divideontimes\)
\divideontimes
\(\leftthreetimes\)
\leftthreetimes
\(\ltimes\)
\ltimes
\(\rightthreetimes\)
\rightthreetimes
\(\rtimes\)
\rtimes
\(\backslash\)
\backslash
\(\bigodot\)
\bigodot
\(\boxdot\)
\boxdot
\(\cdotp\)
\cdotp
\(\centerdot\)
\centerdot
\(\doteq\)
\doteq
\(\doteqdot\)
\doteqdot
\(\dotplus\)
\dotplus
\(\dotsb\)
\dotsb
\(\dotsc\)
\dotsc
\(\dotsi\)
\dotsi
\(\dotsm\)
\dotsm
\(\dotso\)
\dotso
\(\fallingdotseq\)
\fallingdotseq
\(\gtrdot\)
\gtrdot
\(\ldotp\)
\ldotp
\(\lessdot\)
\lessdot
\(\risingdotseq\)
\risingdotseq
\(\Im\)
\Im
\(\Re\)
\Re
\(\clubsuit\)
\clubsuit
\(\diamondsuit\)
\diamondsuit
\(\heartsuit\)
\heartsuit
\(\spadesuit\)
\spadesuit
\(\sqcap\)
\sqcap
\(\sqcup\)
\sqcup
\(\square\)
\square
\(\bigsqcup\)
\bigsqcup
\(\blacksquare\)
\blacksquare
\(\diamond\)
\diamond
\(\Diamond\)
\Diamond
\(\Cup\)
\Cup
\(\bigstar\)
\bigstar
\(\bigcirc\)
\bigcirc
\(\star\)
\star
\(\ulcorner\)
\ulcorner
\(\urcorner\)
\urcorner
\(\llcorner\)
\llcorner
\(\lrcorner\)
\lrcorner
\(\diagdown\)
\diagdown
\(\diagup\)
\diagup
\(\downharpoonleft\)
\downharpoonleft
\(\downharpoonright\)
\downharpoonright
\(\leftharpoondown\)
\leftharpoondown
\(\leftharpoonup\)
\leftharpoonup
\(\leftrightharpoons\)
\leftrightharpoons
\(\rightharpoondown\)
\rightharpoondown
\(\rightharpoonup\)
\rightharpoonup
\(\rightleftharpoons\)
\rightleftharpoons
\(\rightleftharpoons\)
\rightleftharpoons
\(\upharpoonleft\)
\upharpoonleft
\(\upharpoonright\)
\upharpoonright
\(\circeq\)
\circeq
\(\circledast\)
\circledast
\(\circledcirc\)
\circledcirc
\(\circledR\)
\circledR
\(\circledS\)
\circledS
\(\Box\)
\Box
\(\bullet\)
\bullet
\(\Cap\)
\Cap
\(\cong\)
\cong
\(\digamma\)
\digamma
\(\Doteq\)
\Doteq
\(\doublebarwedge\)
\doublebarwedge
\(\doublecap\)
\doublecap
\(\doublecup\)
\doublecup
\(\eqsim\)
\eqsim
\(\eqslantgtr\)
\eqslantgtr
\(\eqslantless\)
\eqslantless
\(\eth\)
\eth
\(\gnapprox\)
\gnapprox
\(\gneq\)
\gneq
\(\gneqq\)
\gneqq
\(\gnsim\)
\gnsim
\(\lnapprox\)
\lnapprox
\(\lneq\)
\lneq
\(\lneqq\)
\lneqq
\(\lnsim\)
\lnsim
\(\longmapsto\)
\longmapsto
\(\leadsto\)
\leadsto
\(\nabla\)
\nabla
\(\ncong\)
\ncong
\(\nexists\)
\nexists
\(\nsim\)
\nsim
\(\wp\)
\wp
\(\wr\)
\wr
\(\therefore\)
\therefore
\(\thickapprox\)
\thickapprox
\(\thicksim\)
\thicksim
\(\smallfrown\)
\smallfrown
\(\smallsmile\)
\smallsmile
\(\smile\)
\smile
\(\space\)
\space
\(\pitchfork\)
\pitchfork
\(\sharp\)
\sharp
\(\shortmid\)
\shortmid
\(\shortparallel\)
\shortparallel
\(\propto\)
\propto
\(\nparallel\)
\nparallel
\(\nshortmid\)
\nshortmid
\(\nshortparallel\)
\nshortparallel
\(\amalg\)
\amalg
\(\ast\)
\ast
\(\lmoustache\)
\lmoustache
\(\rmoustache\)
\rmoustache
\(\Game\)
\Game
\(\curlyeqprec\)
\curlyeqprec
\(\curlyeqsucc\)
\curlyeqsucc
\(\curlyvee\)
\curlyvee
\(\curlywedge\)
\curlywedge
\(\dagger\)
\dagger
\(\ddagger\)
\ddagger
\(\Finv\)
\Finv
\(\flat\)
\flat
\(\frown\)
\frown
\(\gtrapprox\)
\gtrapprox
\(\gtreqless\)
\gtreqless
\(\gtreqqless\)
\gtreqqless
\(\gtrless\)
\gtrless
\(\gtrsim\)
\gtrsim
\(\gvertneqq\)
\gvertneqq
\(\between\)
\between
\(\blacklozenge\)
\blacklozenge
\(\bot\)
\bot
\(\bowtie\)
\bowtie
\(\Bumpeq\)
\Bumpeq
\(\bumpeq\)
\bumpeq
\(\eqcirc\)
\eqcirc
\(\imath\)
\imath
\(\jmath\)
\jmath
\(\Join\)
\Join
\(\land\)
\land
\(\lessapprox\)
\lessapprox
\(\lesseqgtr\)
\lesseqgtr
\(\lesseqqgtr\)
\lesseqqgtr
\(\lessgtr\)
\lessgtr
\(\lesssim\)
\lesssim
\(\S\)
\S

Feladat. Állítsd elő ezt a szöveget:

Definíció. Az \(f\) függvény akkor folytonos az \(a\) pontban, ha minden \(\varepsilon>0\)-hoz létezik olyan \(\delta>0\), hogy
\((a-\delta,a+\delta)\subset D(f)\), és \(\forall x\in(a-\delta,a+\delta)\) esetén \(|f(x)-f(a)|<\varepsilon\).

↶ előző oldal
⇊ megoldás ⇊
következő oldal ↷

Gyakorló pálya

TeX forrás:
Eredmény: